About relationship between summability of almost periodic functions and Fouriers coefficients
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 47-54
Cet article a éte moissonné depuis la source Math-Net.Ru
We generalize Paley's theorem for Bezicovich and Stepanov almost periodic functions on arbitrary trigonometric system. It is proved that for any trigonometric series under some conditions there exists an almost-periodic function which the given series is its Fourier series.
@article{VMJ_2014_16_3_a4,
author = {Yu. Kh. Khasanov},
title = {About relationship between summability of almost periodic functions and {Fouriers} coefficients},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {47--54},
year = {2014},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a4/}
}
TY - JOUR AU - Yu. Kh. Khasanov TI - About relationship between summability of almost periodic functions and Fouriers coefficients JO - Vladikavkazskij matematičeskij žurnal PY - 2014 SP - 47 EP - 54 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a4/ LA - ru ID - VMJ_2014_16_3_a4 ER -
Yu. Kh. Khasanov. About relationship between summability of almost periodic functions and Fouriers coefficients. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 47-54. http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a4/
[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR
[2] Paley R., “Some theorems on orthogonal functions”, Stud. Math., s1-7:3 (1932), 205–208 | MR | Zbl
[3] Levitan B. M., Pochti-periodicheskie funktsii, Gostekhizdat, M., 1947, 396 pp.
[4] Timan M. F., “Orthonormal systems satisfying an inequality of S. M. Nikolskii”, Analysis Math., 4 (1978), 75–82 | DOI | MR | Zbl
[5] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, Izd-vo inostr. lit-ry, M., 1948, 456 pp.