About relationship between summability of almost periodic functions and Fouriers coefficients
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 47-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize Paley's theorem for Bezicovich and Stepanov almost periodic functions on arbitrary trigonometric system. It is proved that for any trigonometric series under some conditions there exists an almost-periodic function which the given series is its Fourier series.
@article{VMJ_2014_16_3_a4,
     author = {Yu. Kh. Khasanov},
     title = {About relationship between summability of almost periodic functions and {Fouriers} coefficients},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {47--54},
     year = {2014},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a4/}
}
TY  - JOUR
AU  - Yu. Kh. Khasanov
TI  - About relationship between summability of almost periodic functions and Fouriers coefficients
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 47
EP  - 54
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a4/
LA  - ru
ID  - VMJ_2014_16_3_a4
ER  - 
%0 Journal Article
%A Yu. Kh. Khasanov
%T About relationship between summability of almost periodic functions and Fouriers coefficients
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 47-54
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a4/
%G ru
%F VMJ_2014_16_3_a4
Yu. Kh. Khasanov. About relationship between summability of almost periodic functions and Fouriers coefficients. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 47-54. http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a4/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR

[2] Paley R., “Some theorems on orthogonal functions”, Stud. Math., s1-7:3 (1932), 205–208 | MR | Zbl

[3] Levitan B. M., Pochti-periodicheskie funktsii, Gostekhizdat, M., 1947, 396 pp.

[4] Timan M. F., “Orthonormal systems satisfying an inequality of S. M. Nikolskii”, Analysis Math., 4 (1978), 75–82 | DOI | MR | Zbl

[5] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, Izd-vo inostr. lit-ry, M., 1948, 456 pp.