Basis property of the Haar system in weighted variable exponent Lebesgue spaces
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 38-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions for Haar system to be a basis in weighted variable exponent Lebesgue spaces were found.
@article{VMJ_2014_16_3_a3,
     author = {M. G. Magomed-Kasumov},
     title = {Basis property of the {Haar} system in weighted variable exponent {Lebesgue} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {38--46},
     year = {2014},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a3/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
TI  - Basis property of the Haar system in weighted variable exponent Lebesgue spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 38
EP  - 46
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a3/
LA  - ru
ID  - VMJ_2014_16_3_a3
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%T Basis property of the Haar system in weighted variable exponent Lebesgue spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 38-46
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a3/
%G ru
%F VMJ_2014_16_3_a3
M. G. Magomed-Kasumov. Basis property of the Haar system in weighted variable exponent Lebesgue spaces. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 38-46. http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a3/

[1] Sharapudinov I. I., “O topologii prostranstva $L^{p(t)}([0,1])$”, Mat. zametki, 26:4 (1979), 613–632 | MR | Zbl

[2] Sharapudinov I. I., Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012, 267 pp.

[3] Diening L., Harjulehto P., Hasto P., Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Berlin, 2011, 509 pp. | MR | Zbl

[4] Sharapudinov I. I., “O bazisnosti sistemy Khaara v prostranstve $L^{p(t)}([0,1])$ i printsipe lokalizatsii v srednem”, Mat. sb., 130(172):2(6) (1986), 275–283 | MR | Zbl

[5] Sharapudinov I. I., “Nekotorye voprosy teorii priblizhenii v prostranstvakh $L^{p(x)}$”, Anal. Math., 33:2 (2007), 135–153 | DOI | MR

[6] Izuki M., “Wavelets and modular inequalities in variable $L^p$ spaces”, Georgian Math. J., 15:2 (2008), 281–293 | MR | Zbl

[7] Izuki M., Wavelets and modular inequalities in variable $L^p$ spaces, Preprint, 2007

[8] Magomed-Kasumov M. G., “Skhodimost pryamougolnykh summ Fure–Khaara v prostranstvakh Lebega s peremennym pokazatelem $L^{p(x,y)}$”, Izv. Sarat. un-ta. Ser. Matematika. Mekhanika. Informatika, 13:1(2) (2013), 76–81 | Zbl

[9] Sharapudinov I. I., “O ravnomernoi ogranichennosti v $L^p$ $(p=p(x))$ nekotorykh semeistv operatorov svertki”, Mat. zametki, 59:2 (1996), 291–302 | DOI | MR | Zbl

[10] Diening L., Hasto P., Muckenhoupt weights in variable exponent spaces, Preprint, 2008

[11] Cruz-Uribe D., Diening L., Hasto P., “The maximal operator on weighted variable Lebesgue spaces”, Fract. Calc. Appl. Anal., 14:3 (2011), 361–374 | DOI | MR | Zbl

[12] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Izd-vo AFTs, M., 1999, 560 pp. | MR

[13] Vulikh B. Z., Vvedenie v funktsionalnyi analiz, Nauka, M., 1967, 416 pp. | MR

[14] Sobol I. M., Mnogomernye kvadratnye formuly i funktsii Khaara, Nauka, M., 1969, 288 pp. | MR