@article{VMJ_2014_16_3_a2,
author = {A. A. Egorov},
title = {Solutions of the differential inequality with a~null {Lagrangian:} higher integrability and removability of {singularities.~I}},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {22--37},
year = {2014},
volume = {16},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a2/}
}
TY - JOUR AU - A. A. Egorov TI - Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. I JO - Vladikavkazskij matematičeskij žurnal PY - 2014 SP - 22 EP - 37 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a2/ LA - en ID - VMJ_2014_16_3_a2 ER -
%0 Journal Article %A A. A. Egorov %T Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. I %J Vladikavkazskij matematičeskij žurnal %D 2014 %P 22-37 %V 16 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a2/ %G en %F VMJ_2014_16_3_a2
A. A. Egorov. Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. I. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 22-37. http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a2/
[1] Astala K., “Area distortion of quasiconformal mappings”, Acta Math., 173:1 (1994), 37–60 | DOI | MR | Zbl
[2] Astala K., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, 48, Princeton Univ. Press, Princeton, 2009, xvi+677 pp. | MR | Zbl
[3] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl
[4] Ball J. M., “Constitutive inequalities and existence theorems in nonlinear elastostatics”, Nonlinear Analysis and Mechanics: Heriot–Watt Symposium (Edinburgh, 1976), v. 1, Pitman, London, 1977, 187–241 | MR
[5] Ball J. M., Currie J. C., Olver P. J., “Null Lagrangians, weak continuity, and variational problems of arbitrary order”, J. Funct. Anal., 41 (1981), 135–174 | DOI | MR | Zbl
[6] Belinskiĭ P. P., General Properties of Quasiconformal Mappings, Nauka, Novosibirsk, 1974 (Russian) | MR
[7] Bezrukova O. L., Dairbekov N. S., Kopylov A. P., “On mappings which are close in the $C$-norm to classes of solutions of linear elliptic partial differential equations”, Tr. Inst. Math., 7, 1987, 19–30 (Russian) | MR | Zbl
[8] Bojarski B., “Homeomorphic solutions of Beltrami systems”, Dokl. Akad. Nauk SSSR, 102 (1955), 661–664 (Russian) | MR | Zbl
[9] Bojarski B., “Generalized solutions of a system of first-order differential equations of elliptic type with discontinuous coefficients”, Math. Sb., 43(85):4 (1957), 451–503 (Russian) | MR | Zbl
[10] Bojarski B., Gutlyanskii V., Martio O., Ryazanov V., Infinitesimal Geometry of Quasiconformal and bi-Lipschitz Mappings in the Plane, European Math. Soc., Zurich, 2013, ix+205 pp. | MR | Zbl
[11] Dairbekov N.S., Stability in the $C$-Norm of Classes of Solutions of Linear Elliptic Partial Differential Equations, Candidate's dissertation, Novosibirsk, 1986 (Russian)
[12] Russ. Acad. Sci., Dokl., Math., 45:3 (1992), 578–582 | MR | Zbl
[13] Sib. Math. J., 34:4 (1993), 669–682 | DOI | MR | Zbl
[14] Dairbekov N. S., Stability of Classes of Mappings, Beltrami Equations, and Quasiregular Mappings of Several Variables, Doctoral dissertation, Novosibirsk, 1995 (Russian)
[15] Edelen D. G. B., Non Local Variations and Local Invariance of Fields, Modern Anal. and Comp. Methods in Sci. and Engineering, 19, Elsivier, N.Y., 1969 | MR
[16] Egorov A. A., “Stability of classes of solutions to partial differential relations constructed by convex and quasiaffine functions”, Proc. on geometry and analysis, Izdatel'stvo Instituta Matematiki SO RAN, Novosibirsk, 2003, 275–288 (Russian)
[17] Egorov A. A., “Stability of classes of solutions to partial differential relations constructed by quasiconvex functions and null Lagrangians”, Equadiff 2003, World Sci. Publ., Hackensack, 2005, 1065–1067 | DOI | MR | Zbl
[18] Dokl. Math., 76:1 (2007), 599–602 | DOI | MR | Zbl
[19] Sib. Math. J., 49:4 (2008), 637–649 | DOI | MR | Zbl
[20] Egorov A. A., Solutions of the Differential Inequality with a Null Lagrangian: Regularity and Removability of Singularities, 2010, arXiv: 1005.3459
[21] Egorov A. A., “One integral inequality for solutions of the differential inequality with a null Lagrangian and its application”, The collection of the scientific articles of the International school-seminar “Lomonosov's readings in Altai 2012” (Barnaul, 20–23 November, 2012), v. 1, ASPA, Barnaul, 2012, 284–289
[22] Egorov A. A., Solutions of the Differential Inequality with a Null Lagrangian: Higher Integrability and Removability of Singularities. II, (To appear)
[23] Faraco D., Zhong X., “A short proof of the self-improving regularity of quasiregular mappings”, Proc. Amer. Math. Soc., 134:1 (2006), 187–192 | DOI | MR | Zbl
[24] Gao H., “Regularity for weakly $(K_1,K_2)$-quasiregular mappings”, Science in China Ser. A, 46:4 (2003), 499–505 | DOI | MR | Zbl
[25] Gao H., Huang Q., Qian F., “Regularity for weakly $(K_1,K_2(x))$-quasiregular mappings of several $n$-dimensional variables”, Front. Math. China, 6:2 (2011), 241–251 | DOI | MR | Zbl
[26] Gao H., Li T., “On degenerate weakly $(K_1,K_2)$-quasiregular mappings”, Acta Math. Sci. Ser. B, 28:1 (2008), 163–170 | DOI | MR | Zbl
[27] Gao H., Zhou S., Meng Y., “A new inequality for weakly $(K_1,K_2)$-quasiregular mappings”, Acta Math. Sin. Engl. Ser., 23:12 (2007), 2241–2246 | DOI | MR | Zbl
[28] Gehring F. W., “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Bull. Am. Math. Soc., 79 (1973), 465–466 | DOI | MR | Zbl
[29] Sib. Math. J., 17:6 (1971), 900–906 | MR
[30] Gol'dshtein V. M., Reshetnyak Yu. G., Introduction to the Theory of Functions with Generalized Derivatives, and Quasiconformal Mappings, Nauka, M., 1983, 285 pp. (Russian) | MR
[31] Gol'dshtein V. M., Reshetnyak Yu. G., Quasiconformal Mappings and Sobolev Spaces, Math. and its Appl. Soviet Ser., 54, Kluwer Acad. Publ., Dordrecht etc., 1990, xix+371 pp. | MR
[32] Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E., The Beltrami Equation. A Geometric Approach, Developments in Math., 26, Springer, Berlin, 2012, xiii+301 pp. | DOI | MR | Zbl
[33] Iwaniec T., “On $L^p$-integrability in PDE's and quasiregular mappings for large exponents”, Ann. Acad. Sci. Fenn. Ser. AI, 7 (1982), 301–322 | MR | Zbl
[34] Iwaniec T., “$p$-Harmonic tensors and quasiregular mappings”, Ann. Math., 136 (1992), 651–685 | DOI | MR
[35] Iwaniec T., Martin G., “Quasiregular mappings in even dimensions”, Acta Math., 170 (1993), 29–81 | DOI | MR | Zbl
[36] Iwaniec T., Martin G., Geometric Function Theory and Non-Linear Analysis, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2001 | MR
[37] Iwaniec T., Migliaccio L., Nania L., Sbordone C., “Integrability and removability results for quasiregular mappings in high dimensions”, Math. Scand., 75:2 (1994), 263–279 | MR | Zbl
[38] Knops R. J., Stuart C. A., “Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity”, Arch. Ration. Mech. Anal., 86:3 (1984), 233–249 | DOI | MR | Zbl
[39] Sib. Math. J., 24:3 (1983), 373–391 | DOI | MR
[40] Kopylov A. P., Stability of Classes of Multidimensional Holomorphic Mappings, Doctoral dissertation, Novosibirsk, 1984 (Russian)
[41] Kopylov A. P., Stability in the $C$-Norm of Classes of Mappings, Nauka, Novosibirsk, 1990 (Russian) | MR | Zbl
[42] Sib. Math. J., 36:2 (1995), 305–323 | DOI | MR | Zbl
[43] Sib. Math. J., 38:4 (1997), 715–729 | DOI | MR | Zbl
[44] Kristensen J., Finite functionals and Young measures generated by gradients of Sobolev functions, Math. Inst. Technical Univ. of Denmark Mat-Report No 1994-34, Lyngby, Denmark, 1994, 58 pp.
[45] Krushkal' S. L., Quasiconformal Mappings and Riemann Surfaces, Nauka, Novosibirsk, 1975, 195 pp. (Russian) | MR | Zbl
[46] Krushkal' S. L., Quasiconformal Mappings and Riemann Surfaces, Scripta Series in Math. A Halsted Press Book, V. H. Winston Sons, Washington; John Wiley Sons, N.Y. etc., 1979, xii+319 pp. | MR | Zbl
[47] Landers A. W., “Invariant multiple integrals in the calculus of variations”, Contributions to the Calculus of Variations 1938–1941, Univ. of Chicago Press, Chicago, 1942, 184–189 | MR
[48] Lehto O., Remarks on the integrability of the derivatives of quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. AI, 371, 1965, 8 pp. | MR | Zbl
[49] Lehto O., Virtanen K. I., Quasiconformal Mappings in the Plane, Grundlehren der Math. Wissenschaften, 126, 2nd ed., Springer-Verlag, Berlin–Heidelberg–N.Y., 1973, viii+258 pp. | MR | Zbl
[50] Martio O., Rickman S., Väisälä J., Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. AI, 488, 1971, 31 pp. | MR | Zbl
[51] Martio O., “On the integrability of the derivative of a quasiregular mapping”, Math. Scand., 35 (1974), 43–48 | MR | Zbl
[52] Martio O., Modern Tools in the Theory of Quasiconformal Maps, Textos de Matematica. Serie B, 27, Universidade de Coimbra, Departamento de Matematica, Coimbra, 2000, 43 pp. | MR | Zbl
[53] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer, N.Y., 2009, xii+367 pp. | MR | Zbl
[54] Meyers N. G., Elcrat A., “Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions”, Duke Math. J., 42 (1975), 121–136 | DOI | MR | Zbl
[55] Morrey Ch. B., Multiple Integrals in the Calculus of Variations, Grundlehren der Math. Wiss., 130, Springer-Verlag, Berlin etc., 1966 | MR | Zbl
[56] Müller S., “Variational models for microstructure and phase transitions”, Calculus of variations and geometric evolution problems, Lectures given at the 2nd session of the Centro Internazionale Matematico Estivo CIME (Cetraro, Italy, June 15–22, 1996), Lect. Notes Math., 1713, Springer, Berlin, 1999, 85–210 | DOI | MR | Zbl
[57] Sib. Math. J., 17:4 (1976), 653–674 | DOI | MR | Zbl
[58] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Nauka, Novosibirsk, 1982, 288 pp. (Russian)
[59] Reshetnyak Yu. G., Stability Theorems in Geometry and Analysis, Nauka, Novosibirsk, 1982, 232 pp. (Russian) | MR | Zbl
[60] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Transl. of Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, 362 pp. | MR | Zbl
[61] Reshetnyak Yu. G., Stability Theorems in Geometry and Analysis, Math. and its Appl., 304, Kluwer Acad. Publ., Dordrecht, 1994, xi+394 pp. | MR | Zbl
[62] Reshetnyak Yu. G., Stability Theorems in Geometry and Analysis, 2nd rev. ed., Izdatel'stvo Instituta Matematiki SO RAN, Novosibirsk, 1996, 424 pp. (Russian) | MR | Zbl
[63] Rickman S., Quasiregular Mappings, Results in Math. and Related Areas (3), 26, Springer-Verlag, Berlin, 1993, x+213 pp. | MR | Zbl
[64] Math. Notes, 50:4 (1991), 1089–1090 | DOI | MR | Zbl | Zbl
[65] Sokolova T. V., Stability in the Space $W^1_p$ of Homothety Transformations, Candidate's dissertation, Novosibirsk, 1991 (Russian)
[66] Sychev M., “Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 755–782 | DOI | MR | Zbl
[67] Tong Y., Gu J. Li Y., “A new inequality for weakly $(K_1,K_2)$-quasiregular mappings”, J. Inequal. Pure Appl. Math., 8:3 (2007), Paper No 91, 4 pp. | MR | Zbl
[68] Väisälä J., Lectures on $n$-Dimensional Quasiconformal Mappings, Springer-Verlag, Berlin–Heidelberg–N.Y., 1971, xiv+144 pp. | MR | Zbl
[69] Vuorinen M., Conformal Geometry and Quasiregular Mappings, Lect. Notes Math., 1319, Springer-Verlag, Berlin etc., 1988, xix+209 pp. | MR | Zbl