Transvection modules in the overgroups of a non-split maximal torus
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this article is to investigate the modules of transvections and rings of multipliers subgroups of the general linear group $G=GL(n,k)$ of degree $n$ over a field $k$, containing non-split maximal torus $T=T(d)$, associated with a radical extension of $k(\sqrt[n]d)$ of the degree $n$ of the ground field $k$ of an odd characteristic (minisotropic torus). We find a full list of $2\cdot[(\frac{n-1}2)^2]$ relations ($[\cdot]$ – integer part) of the modules of transvections. We prove that all ring of multipliers coincide, and all modules transvections are ideals of the ring of multipliers. All results were proved by the assumption that the ground field $k$ is the field of fractions of a principal ideal domain.
@article{VMJ_2014_16_3_a0,
     author = {N. A. Dzhusoeva and V. A. Koibaev},
     title = {Transvection modules in the overgroups of a~non-split maximal torus},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--8},
     year = {2014},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a0/}
}
TY  - JOUR
AU  - N. A. Dzhusoeva
AU  - V. A. Koibaev
TI  - Transvection modules in the overgroups of a non-split maximal torus
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 3
EP  - 8
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a0/
LA  - ru
ID  - VMJ_2014_16_3_a0
ER  - 
%0 Journal Article
%A N. A. Dzhusoeva
%A V. A. Koibaev
%T Transvection modules in the overgroups of a non-split maximal torus
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 3-8
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a0/
%G ru
%F VMJ_2014_16_3_a0
N. A. Dzhusoeva; V. A. Koibaev. Transvection modules in the overgroups of a non-split maximal torus. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 3-8. http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a0/

[1] Borevich Z. I., Koibaev V. A., “O koltsakh mnozhitelei, svyazannykh s promezhutochnymi podgruppami dlya kvadratichnykh torov”, Vestn. SPbGU, 1:2 (1993), 5–10 | MR | Zbl

[2] Borevich Z. I., Koibaev V. A., Chan Ngok Khoi, “Reshetki podgrupp v $GL(2,Q)$, soderzhaschikh nerasschepimyi tor”, Zap. nauch. seminarov POMI, 191, 1991, 24–43 | MR | Zbl

[3] Dzhusoeva N. A., “Setevye koltsa normalizuemye torom”, Trudy IMM UrO RAN, 19, no. 3, 2013, 113–119

[4] Dzhusoeva N. A., Koibaev V. A., “Maksimalnye podgruppy, soderzhaschie tor, svyazannye s polem otnoshenii dedekindovoi oblasti”, Zap. nauch. seminarov POMI, 289, 2002, 149–153 | MR | Zbl

[5] Koibaev V. A., “Podgruppy gruppy $GL(2,Q)$, soderzhaschie nerasschepimyi maksimalnyi tor”, Dokl. AN SSSR, 312:1 (1990), 36–38 | MR

[6] Koibaev V. A., “Transvektsii v podgruppakh polnoi lineinoi gruppy, soderzhaschikh nerasschepimyi maksimalnyi tor”, Algebra i analiz, 21:5 (2009), 70–86 | MR | Zbl

[7] Leng S., Algebra, Nauka, M., 1968, 572 pp.