Transvection modules in the overgroups of a~non-split maximal torus
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 3-8
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The aim of this article is to investigate the modules of transvections and rings of multipliers subgroups of the general linear group $G=GL(n,k)$ of degree $n$ over a field $k$, containing non-split maximal torus $T=T(d)$, associated with a radical extension of $k(\sqrt[n]d)$ of the degree $n$ of the ground field $k$ of an odd characteristic (minisotropic torus). We find a full list of $2\cdot[(\frac{n-1}2)^2]$ relations ($[\cdot]$ – integer part) of the modules of transvections. We prove that all ring of multipliers coincide, and all modules transvections are ideals of the ring of multipliers. All results were proved by the assumption that the ground field $k$ is the field of fractions of a principal ideal domain.
			
            
            
            
          
        
      @article{VMJ_2014_16_3_a0,
     author = {N. A. Dzhusoeva and V. A. Koibaev},
     title = {Transvection modules in the overgroups of a~non-split maximal torus},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a0/}
}
                      
                      
                    TY - JOUR AU - N. A. Dzhusoeva AU - V. A. Koibaev TI - Transvection modules in the overgroups of a~non-split maximal torus JO - Vladikavkazskij matematičeskij žurnal PY - 2014 SP - 3 EP - 8 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a0/ LA - ru ID - VMJ_2014_16_3_a0 ER -
N. A. Dzhusoeva; V. A. Koibaev. Transvection modules in the overgroups of a~non-split maximal torus. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 3-8. http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a0/
