On inversion of semigroups of operators
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 79-89
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study semigroups of linear relations in Banach space obtained by inversion of semigroups of bounded linear operators of different classes. As a basic research tool we use the orbit of a point. Also we use the common definition of the generator of a semigroup of linear relations.
@article{VMJ_2014_16_2_a8,
     author = {A. G. Chshiev},
     title = {On inversion of semigroups of operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {79--89},
     year = {2014},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a8/}
}
TY  - JOUR
AU  - A. G. Chshiev
TI  - On inversion of semigroups of operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 79
EP  - 89
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a8/
LA  - ru
ID  - VMJ_2014_16_2_a8
ER  - 
%0 Journal Article
%A A. G. Chshiev
%T On inversion of semigroups of operators
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 79-89
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a8/
%G ru
%F VMJ_2014_16_2_a8
A. G. Chshiev. On inversion of semigroups of operators. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 79-89. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a8/

[1] Baskakov A. G., “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. mat., 73:2 (2009), 3–68 | DOI | MR | Zbl

[2] Hughes Rhonda Jo., “Semigroups of Unbounded Linear Operators in Banach Space”, Trans. Amer. Math. Soc., 230 (1977), 113–145 | DOI | MR | Zbl

[3] Melnikova I. V., General theory of ill-posed Cauchy problem, 1995 | MR

[4] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970, 336 pp. | MR

[5] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, M., 1995, 176 pp. | MR

[6] Anufrieva U. A., Melnikova I. V., “Osobennosti i regulyarizatsiya nekorrektnykh zadach Koshi s differentsialnymi operatorami”, Differents. ur-ya i teoriya polugrupp, SMFN, 14, RUDN, M., 2005, 3–156 | MR | Zbl

[7] Cross R., Multivalued linear operators, Monogr. and Textbooks in Pure and Appl. Math., 213, M. Dekker, N.Y., 1998, 352 pp. | MR | Zbl

[8] Favini A., Yagi A., Degenerate differential equations in Banach spaces, M. Dekker, N.Y., 1998

[9] Khille E., Funktsionalnyi analiz i polugruppy, Izd-vo inostr. lit-ry, M., 1962, 829 pp. | MR

[10] Baskakov A. G., “Lineinye otnosheniya kak generatory polugrupp operatorov”, Mat. zametki, 84:2 (2008), 175–192 | DOI | MR | Zbl

[11] Baskakov A. G., Chernyshov K. I., “Lineinye otnosheniya, differentsialnye vklyucheniya i vyrozhdennye polugruppy”, Funktsion. analiz i ego prilozheniya, 36:4 (2002), 65–70 | DOI | MR | Zbl

[12] Baskakov A. G., Chernyshov K. I., “Spektralnaya teoriya lineinykh otnoshenii i vyrozhdennye polugruppy”, Mat. sb., 193:11 (2002), 3–42 | DOI | MR | Zbl

[13] Chshiev A. G., “Teorema Gerkharda–Pryussa dlya nekotorogo klassa vyrozhdennykh polugrupp operatora”, Mat. zametki (to appear)

[14] Baskakov A. G., “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, Uspekhi mat. nauk, 68:1(409) (2013), 77–128 | DOI | MR | Zbl

[15] Chshiev A. G., “Ob usloviyakh zamknutosti i usloviyakh zamykaemosti infinitezimalnykh operatorov nekotorykh klassov polugrupp operatorov”, Izv. vuzov. Matem., 2011, no. 8, 77–85 | MR | Zbl

[16] Chshiev A. G., “O polugruppe Silchenko”, Vladikavkaz. mat. zhurn., 15:4 (2013), 82–90 | Zbl

[17] Arens R., “Operational calcules of linear relations”, Pacific J. Math., 11 (1961), 9–23 | DOI | MR | Zbl

[18] Zagorskii A. S., “O polugruppakh lineinykh otnoshenii”, Vestn. VGU. Ser. fiz.-mat., 2004, no. 2, 158–161

[19] Engel K. J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Springer Verlag, New York, 2000, 586 pp. | MR | Zbl