Laterally complete $C_\infty(Q)$-modules
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 69-78
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a regular laterally complete $C_\infty(Q)$-module and $\mathscr B$ be a Boolean algebra whose Stone space is $Q$. We introduce the passport $\Gamma(X)$ for $X$ consisting of uniquely defined partition of unity in $\mathscr B$ and set of pairwise different cardinal numbers. It is proved that $C_\infty(Q)$-modules $X$ and $Y$ are isomorphic if and only if $\Gamma(X)=\Gamma(Y)$.
@article{VMJ_2014_16_2_a7,
author = {V. I. Chilin and J. A. Karimov},
title = {Laterally complete $C_\infty(Q)$-modules},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {69--78},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a7/}
}
V. I. Chilin; J. A. Karimov. Laterally complete $C_\infty(Q)$-modules. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 69-78. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a7/