Boundedness of the Riesz potential operator in weighted grand Lebesgue spaces
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 62-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove а theorem on the two-weighted boundedness of linear operators in generalized Grand Lebesgue spaces introduced in our previous papers. This theorem is applied to obtain two-weigt estimated for the Riesz potential operator in such spaces.
@article{VMJ_2014_16_2_a6,
     author = {S. M. Umarkhadzhiev},
     title = {Boundedness of the {Riesz} potential operator in weighted grand {Lebesgue} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {62--68},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a6/}
}
TY  - JOUR
AU  - S. M. Umarkhadzhiev
TI  - Boundedness of the Riesz potential operator in weighted grand Lebesgue spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 62
EP  - 68
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a6/
LA  - ru
ID  - VMJ_2014_16_2_a6
ER  - 
%0 Journal Article
%A S. M. Umarkhadzhiev
%T Boundedness of the Riesz potential operator in weighted grand Lebesgue spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 62-68
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a6/
%G ru
%F VMJ_2014_16_2_a6
S. M. Umarkhadzhiev. Boundedness of the Riesz potential operator in weighted grand Lebesgue spaces. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 62-68. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a6/