@article{VMJ_2014_16_2_a6,
author = {S. M. Umarkhadzhiev},
title = {Boundedness of the {Riesz} potential operator in weighted grand {Lebesgue} spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {62--68},
year = {2014},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a6/}
}
S. M. Umarkhadzhiev. Boundedness of the Riesz potential operator in weighted grand Lebesgue spaces. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 62-68. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a6/
[1] Kokilashvili V., “Maksimalnye funktsii i integraly tipa potentsiala v vesovykh prostranstvakh Lebega i Lorentsa”, Tr. Mat. in-ta AN SSSR, 172, 1985, 192–201 | MR | Zbl
[2] Sobolev S. L., “Ob odnoi teoreme funktsionalnogo analiza”, Mat. sb., 4(46):3 (1938), 471–497 | Zbl
[3] Umarkhadzhiev S M., “Obobschenie ponyatiya grand-prostranstva Lebega”, Izv. vuzov. Matematika, 2014, no. 4, 42–51 | MR
[4] Bergh J., Löfström J., Interpolation Spaces. An Introduction, Springer, Berlin, 1976, 207 pp. | MR | Zbl
[5] Capone C., Fiorenza A., “On small Lebesgue spaces”, J. Function Spaces and Appl., 3 (2005), 73–89 | DOI | MR | Zbl
[6] Di Fratta G., Fiorenza A., “A direct approach to the duality of grand and small Lebesgue spaces”, Nonlinear Analysis: Theory, Methods and Applications, 70:7 (2009), 2582–2592 | DOI | MR | Zbl
[7] Ding Y., Lin C.-C., “Two-weight norm inequalities for the rough fractional integrals”, Int. J. Math. Math. Sci., 25:8 (2001), 517–524 | DOI | MR | Zbl
[8] Fiorenza A., Gupta B., Jain P., “The maximal theorem in weighted grand Lebesgue spaces”, Studia Math., 188:2 (2008), 123–133 | DOI | MR | Zbl
[9] Fiorenza A., “Duality and reflexivity in grand Lebesgue spaces”, Collect. Math., 51:2 (2000), 131–148 | MR | Zbl
[10] Fiorenza A., Karadzhov G. E., “Grand and small Lebesgue spaces and their analogs”, J. Anal. Appl., 23:4 (2004), 657–681 | MR | Zbl
[11] Fiorenza A., Rakotoson J. M., “Petits espaces de Lebesgue et leurs applications”, C. R. A. S. t., 333 (2001), 1–4
[12] Greco L., Iwaniec T., Sbordone C., “Inverting the $p$-harmonic operator”, Manuscripta Math., 92 (1997), 249–258 | DOI | MR | Zbl
[13] Iwaniec T., Sbordone C., “On the integrability of the Jacobian under minimal hypotheses”, Arch. Rational Mech. Anal., 119 (1992), 129–143 | DOI | MR | Zbl
[14] Kokilashvili V., Meskhi A., “A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces”, Georgian Math. J., 16:3 (2009), 547–551 | MR | Zbl
[15] Kokilashvili V., “Two-weighted estimates for some integral transforms in Lebesgue spaces with mixed norm and imbedding theorems”, Georgian Math. J., 1:5 (1994), 495–503 | DOI | MR | Zbl
[16] Kokilashvili V., “On a progress in the theory of integral operators in weighted Banach function spaces”, Function Spaces, Differential Operators and Nonlinear Analysis, Proc. of the Conf. (Milovy, Bohemian-Moravian Uplands, May 28 – June 2, 2004), Math. Inst. Acad. Sci. Czech. Republick, Praha, 2005, 152–175
[17] Kokilashvili V., “Boundedness criterion for the Cauchy singular integral operator in weighted grand Lebesgue spaces and application to the Riemann problem”, Proc. A. Razmadze Math. Inst., 151 (2009), 129–133 | MR | Zbl
[18] Kokilashvili V., “The Riemann boundary value problem for analytic functions in the frame of grand $L^p$ spaces”, Bull. Georgian Nat. Acad. Sci., 4:1 (2010), 5–7 | MR | Zbl
[19] Kokilashvili V., Samko S., “Boundedness of weighted singular integral operators on a Carleson curves in Grand Lebesgue spaces”, ICNAAM 2010, Intern. Conf. Numer. Anal. Appl. Math., 1281, 2010, 490–493
[20] Kokilashvili V., Samko S., “Boundedness of weighted singular integral operators in Grand Lebesgue spaces”, Georg. Math. J., 18:2 (2011), 259–269 | MR | Zbl
[21] Meskhi A., Criteria for the boundedness of potential operators in grand Lebesgue spaces, arXiv: 1007.1185
[22] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl
[23] Pérez C., “Two weighted norm inequalities for Riesz potetials and uniform $L^p$-weighted Sobolev inequalities”, Indiana Univ. Math. J., 39:1 (1990), 31–44 | DOI | MR | Zbl
[24] Pérez C., “Two weighted inequalities for potetial and fractional type maximal operators”, Indiana Univ. Math. J., 43:2 (1994), 663–683 | DOI | MR | Zbl
[25] Sawyer E. T., “A two weight weak type inequality for fractional integrals”, Trans. Amer. Math. Soc., 281:1 (1984), 339–345 | DOI | MR | Zbl
[26] Sawyer E. T., Weeden R. L., “Weighted inequalities for fractional integrals on euclidean and homogeneous spaces”, Amer. J. Math., 114:4 (1992), 813–874 | DOI | MR | Zbl
[27] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone spaces on sets which may have infinite measure”, Azerb. J. Math., 1:1 (2011), 67–84 | MR | Zbl
[28] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone spaces on sets which may have infinite measure: addendum”, Azerb. J. Math., 1:2 (2011), 143–144 | MR | Zbl
[29] Stein E. M., Weiss G., “Interpolation of operators with change of measures”, Trans. Amer. Math. Soc., 87 (1958), 159–172 | DOI | MR | Zbl
[30] Tord S., “Weighted norm inequalities for Riesz potentials and fractional maximal functions in mixed norm Lebesgue spaces”, Stud. Math., 97:3 (1990), 239–244 | MR