Boundedness of the Riesz potential operator in weighted grand Lebesgue spaces
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 62-68
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove а theorem on the two-weighted boundedness of linear operators in generalized Grand Lebesgue spaces introduced in our previous papers. This theorem is applied to obtain two-weigt estimated for the Riesz potential operator in such spaces.
@article{VMJ_2014_16_2_a6,
author = {S. M. Umarkhadzhiev},
title = {Boundedness of the {Riesz} potential operator in weighted grand {Lebesgue} spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {62--68},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a6/}
}
TY - JOUR AU - S. M. Umarkhadzhiev TI - Boundedness of the Riesz potential operator in weighted grand Lebesgue spaces JO - Vladikavkazskij matematičeskij žurnal PY - 2014 SP - 62 EP - 68 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a6/ LA - ru ID - VMJ_2014_16_2_a6 ER -
S. M. Umarkhadzhiev. Boundedness of the Riesz potential operator in weighted grand Lebesgue spaces. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 62-68. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a6/