Applicability conditions for $q$-ary Reed–Muller codes in traitor tracing
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 38-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The special information protection scheme is investigated. The scheme prevents unauthorized distribution to digital products. The paper introduces the applicability conditions for $q$-ary Reed–Muller codes in the scheme. These codes help to search malefactors who attack the scheme.
@article{VMJ_2014_16_2_a3,
     author = {S. A. Yevpak and V. V. Mkrtichan},
     title = {Applicability conditions for $q$-ary {Reed{\textendash}Muller} codes in traitor tracing},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {38--45},
     year = {2014},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a3/}
}
TY  - JOUR
AU  - S. A. Yevpak
AU  - V. V. Mkrtichan
TI  - Applicability conditions for $q$-ary Reed–Muller codes in traitor tracing
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 38
EP  - 45
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a3/
LA  - ru
ID  - VMJ_2014_16_2_a3
ER  - 
%0 Journal Article
%A S. A. Yevpak
%A V. V. Mkrtichan
%T Applicability conditions for $q$-ary Reed–Muller codes in traitor tracing
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 38-45
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a3/
%G ru
%F VMJ_2014_16_2_a3
S. A. Yevpak; V. V. Mkrtichan. Applicability conditions for $q$-ary Reed–Muller codes in traitor tracing. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 38-45. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a3/

[1] Chor B., Fiat A., Naor M., “Tracing Traitors”, Advances in Cryptology – Crypto 1994, Lecture Notes in Computer Science, 839, 1994, 257–270 | DOI | Zbl

[2] Silverberg A., Staddon J., Walker J., “Application of list decoding to tracing traitors”, Advances in Cryptolo – Asiacrypt 2001, Lecture Notes in Computer Science, 2248, 2001, 175–192 | DOI | MR | Zbl

[3] Staddon J. N., Stinson D. R., Wei R., “Combinatorial properties of frameproof and traceability codes”, IEEE Trans. Inf. Theory, 47 (2001), 1042–1049 | DOI | MR | Zbl

[4] Deundyak V. M., Mkrtichyan V. V., “Matematicheskaya model effektivnoi skhemy spetsialnogo shirokoveschatelnogo shifrovaniya i issledovanie granits ee primeneniya”, Izv. vuzov. Sev.-Kavk. region. Estestvennye nauki, 2009, no. 1, 5–8 | Zbl

[5] Fernandez M., Cotrina J., Sorario M., Domingo N., “A note about the traceability properties of linear codes”, Information Security and Cryptology – ICISC 2007, Lecture Notes in Computer Science, 4817, 2007, 251–258 | DOI | MR

[6] Pellikaan R., Wu X.-W., “List decoding of $q$-ary Reed-Muller Codes”, IEEE Trans. On Information Theory, 50:4 (2004), 679–682 | DOI | MR | Zbl

[7] Evpak S. A., Mkrtichyan V. V., “Issledovanie vozmozhnosti primeneniya $q$-ichnykh kodov Rida–Mallera v skhemakh spetsialnogo shirokoveschatelnogo shifrovaniya”, Izv. vuzov. Sev.-Kavk. region. Estestvennye nauki, 2011, no. 5, 11–15

[8] Evpak S. A., Mkrtichyan V. V., “Ob issledovanii vozmozhnosti primeneniya $q$-ichnykh kodov Rida–Mallera v spetsialnykh skhemakh zaschity informatsii ot NSD”, Obozrenie prikladnoi i promyshlennoi matematiki, 18:2 (2011), 268–269