Applicability conditions for $q$-ary Reed--Muller codes in traitor tracing
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 38-45
Voir la notice de l'article provenant de la source Math-Net.Ru
The special information protection scheme is investigated. The scheme prevents unauthorized distribution to digital products. The paper introduces the applicability conditions for $q$-ary Reed–Muller codes in the scheme. These codes help to search malefactors who attack the scheme.
@article{VMJ_2014_16_2_a3,
author = {S. A. Yevpak and V. V. Mkrtichan},
title = {Applicability conditions for $q$-ary {Reed--Muller} codes in traitor tracing},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {38--45},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a3/}
}
TY - JOUR AU - S. A. Yevpak AU - V. V. Mkrtichan TI - Applicability conditions for $q$-ary Reed--Muller codes in traitor tracing JO - Vladikavkazskij matematičeskij žurnal PY - 2014 SP - 38 EP - 45 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a3/ LA - ru ID - VMJ_2014_16_2_a3 ER -
S. A. Yevpak; V. V. Mkrtichan. Applicability conditions for $q$-ary Reed--Muller codes in traitor tracing. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 38-45. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a3/