@article{VMJ_2014_16_2_a2,
author = {U. G\"on\"ull\"u},
title = {Trace class and {Lidski\u{i}} trace formula on {Kaplansky{\textendash}Hilbert} modules},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {29--37},
year = {2014},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a2/}
}
U. Gönüllü. Trace class and Lidskiĭ trace formula on Kaplansky–Hilbert modules. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 29-37. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a2/
[1] Ganiev I. G., Kudaybergenov K. K., “Measurable bundles of compact operators”, Methods Funct. Anal. Topology, 7:4 (2001), 1–5 | MR | Zbl
[2] Kaplansky I., “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl
[3] Kudaybergenov K. K., Ganiev I. G., “Measurable bundles of compact sets”, Uzbek. Mat. Zh., 1999, no. 6, 37–44 (in Russian) | MR
[4] Kudaybergenov K. K., “$\nabla$-Fredholm operators in Banach–Kantorovich spaces”, Methods Funct. Anal. Topology, 12:3 (2006), 234–242 | MR | Zbl
[5] Kusraev A. G., “Boolean valued analysis of duality between universally complete modules”, Dokl. Akad. Nauk SSSR, 267:5 (1982), 1049–1052 | MR | Zbl
[6] Kusraev A. G., Vector Duality and Its Applications, Nauka, Novosibirsk, 1985 (in Russian) | MR | Zbl
[7] Kusraev A. G., “On functional representation of type I $AW^\ast$-algebras”, Sibirsk. Math. Zh., 32:3 (1991), 78–88 | MR | Zbl
[8] Kusraev A. G., “Cyclically Compact Operators in Banach Spaces”, Vladikavkaz Math. J., 2:1 (2000), 10–23 | MR | Zbl
[9] Kusraev A. G., Dominated Operators, Kluwer Academic Publishers, Dordrecht etc., 2000 | MR | Zbl
[10] Wright J. D. M., “A spectral theorem for normal operators on a Kaplansky–Hilbert module”, Proc. London Math. Soc., 19:3 (1969), 258–268 | DOI | MR | Zbl