Trace class and Lidski\u\i\ trace formula on Kaplansky--Hilbert modules
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 29-37

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce and study the concepts of the trace class operators and global eigenvalue of continuous $\Lambda$-linear operators in Kaplansky–Hilbert modules. In particular, we give a variant of Lidskiĭ trace formula for cyclically compact operators in Kaplansky–Hilbert modules.
@article{VMJ_2014_16_2_a2,
     author = {U. G\"on\"ull\"u},
     title = {Trace class and {Lidski\u\i\} trace formula on {Kaplansky--Hilbert} modules},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a2/}
}
TY  - JOUR
AU  - U. Gönüllü
TI  - Trace class and Lidski\u\i\ trace formula on Kaplansky--Hilbert modules
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 29
EP  - 37
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a2/
LA  - en
ID  - VMJ_2014_16_2_a2
ER  - 
%0 Journal Article
%A U. Gönüllü
%T Trace class and Lidski\u\i\ trace formula on Kaplansky--Hilbert modules
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 29-37
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a2/
%G en
%F VMJ_2014_16_2_a2
U. Gönüllü. Trace class and Lidski\u\i\ trace formula on Kaplansky--Hilbert modules. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 29-37. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a2/