Trace class and Lidskiĭ trace formula on Kaplansky–Hilbert modules
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 29-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce and study the concepts of the trace class operators and global eigenvalue of continuous $\Lambda$-linear operators in Kaplansky–Hilbert modules. In particular, we give a variant of Lidskiĭ trace formula for cyclically compact operators in Kaplansky–Hilbert modules.
@article{VMJ_2014_16_2_a2,
     author = {U. G\"on\"ull\"u},
     title = {Trace class and {Lidski\u{i}} trace formula on {Kaplansky{\textendash}Hilbert} modules},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {29--37},
     year = {2014},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a2/}
}
TY  - JOUR
AU  - U. Gönüllü
TI  - Trace class and Lidskiĭ trace formula on Kaplansky–Hilbert modules
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 29
EP  - 37
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a2/
LA  - en
ID  - VMJ_2014_16_2_a2
ER  - 
%0 Journal Article
%A U. Gönüllü
%T Trace class and Lidskiĭ trace formula on Kaplansky–Hilbert modules
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 29-37
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a2/
%G en
%F VMJ_2014_16_2_a2
U. Gönüllü. Trace class and Lidskiĭ trace formula on Kaplansky–Hilbert modules. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 29-37. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a2/

[1] Ganiev I. G., Kudaybergenov K. K., “Measurable bundles of compact operators”, Methods Funct. Anal. Topology, 7:4 (2001), 1–5 | MR | Zbl

[2] Kaplansky I., “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl

[3] Kudaybergenov K. K., Ganiev I. G., “Measurable bundles of compact sets”, Uzbek. Mat. Zh., 1999, no. 6, 37–44 (in Russian) | MR

[4] Kudaybergenov K. K., “$\nabla$-Fredholm operators in Banach–Kantorovich spaces”, Methods Funct. Anal. Topology, 12:3 (2006), 234–242 | MR | Zbl

[5] Kusraev A. G., “Boolean valued analysis of duality between universally complete modules”, Dokl. Akad. Nauk SSSR, 267:5 (1982), 1049–1052 | MR | Zbl

[6] Kusraev A. G., Vector Duality and Its Applications, Nauka, Novosibirsk, 1985 (in Russian) | MR | Zbl

[7] Kusraev A. G., “On functional representation of type I $AW^\ast$-algebras”, Sibirsk. Math. Zh., 32:3 (1991), 78–88 | MR | Zbl

[8] Kusraev A. G., “Cyclically Compact Operators in Banach Spaces”, Vladikavkaz Math. J., 2:1 (2000), 10–23 | MR | Zbl

[9] Kusraev A. G., Dominated Operators, Kluwer Academic Publishers, Dordrecht etc., 2000 | MR | Zbl

[10] Wright J. D. M., “A spectral theorem for normal operators on a Kaplansky–Hilbert module”, Proc. London Math. Soc., 19:3 (1969), 258–268 | DOI | MR | Zbl