Locally one dimensional scheme of the Dirichlet boundary value problem for fractional diffusion equation with space Caputo fractional derivative
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

Locally one-dimensional difference schemes for the fractional diffusion equation with space Caputo fractional derivative in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved.
@article{VMJ_2014_16_2_a0,
     author = {A. K. Bazzaev},
     title = {Locally one dimensional scheme of the {Dirichlet} boundary value problem for fractional diffusion equation with space {Caputo} fractional derivative},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a0/}
}
TY  - JOUR
AU  - A. K. Bazzaev
TI  - Locally one dimensional scheme of the Dirichlet boundary value problem for fractional diffusion equation with space Caputo fractional derivative
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 3
EP  - 13
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a0/
LA  - ru
ID  - VMJ_2014_16_2_a0
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%T Locally one dimensional scheme of the Dirichlet boundary value problem for fractional diffusion equation with space Caputo fractional derivative
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 3-13
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a0/
%G ru
%F VMJ_2014_16_2_a0
A. K. Bazzaev. Locally one dimensional scheme of the Dirichlet boundary value problem for fractional diffusion equation with space Caputo fractional derivative. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/VMJ_2014_16_2_a0/