On the Ricci curvature of three-dimensional metric Lie algebras
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 1, pp. 57-67
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we get a classification of possible values of the Ricci curvature signature of left invariant Riemannian metrics on three-dimensional Lie groups, that is a specification of some results of J. Milnor. As an auxiliary problem, we classify three-dimensional nonunimodular metric Lie algebras.
@article{VMJ_2014_16_1_a6,
author = {M. S. Chebarikov},
title = {On the {Ricci} curvature of three-dimensional metric {Lie} algebras},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {57--67},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a6/}
}
M. S. Chebarikov. On the Ricci curvature of three-dimensional metric Lie algebras. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a6/