Subdomains method for solution of a singular first kind integral equation with Cauchy kernel
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 1, pp. 50-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of subdomains solution of a singular integral equation of the first kind with Cauchy kernel is investigated. A pair of weight spaces, which are the narrowing of the space of continuous functions are introduced. The correctness of the equations on this pair of spaces is proved. Sufficient conditions for the convergence of the method of subdomains in the uniform metric are established.
@article{VMJ_2014_16_1_a5,
     author = {L. E. Hajrullina and G. Z. Habibullina},
     title = {Subdomains method for solution of a~singular first kind integral equation with {Cauchy} kernel},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {50--56},
     year = {2014},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a5/}
}
TY  - JOUR
AU  - L. E. Hajrullina
AU  - G. Z. Habibullina
TI  - Subdomains method for solution of a singular first kind integral equation with Cauchy kernel
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 50
EP  - 56
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a5/
LA  - ru
ID  - VMJ_2014_16_1_a5
ER  - 
%0 Journal Article
%A L. E. Hajrullina
%A G. Z. Habibullina
%T Subdomains method for solution of a singular first kind integral equation with Cauchy kernel
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 50-56
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a5/
%G ru
%F VMJ_2014_16_1_a5
L. E. Hajrullina; G. Z. Habibullina. Subdomains method for solution of a singular first kind integral equation with Cauchy kernel. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 1, pp. 50-56. http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a5/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 638 pp. | MR

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp. | MR

[3] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[4] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii pervogo roda, Izd-vo KGU, Kazan, 1994, 288 pp. | MR

[5] Lifanov I. K., Osobye integralnye uravneniya i metody ikh chislennogo resheniya, Uchebnoe posobie po kursu lektsii, Maks-Press, M., 2006, 68 pp.

[6] Ermolaeva L. B., Approksimativnye svoistva polinomialnykh operatorov i reshenie integralnykh i integro-differentsialnykh uravnenii metodom podoblastei, Diss. $\dots$ k. f.-m. n., Kazan, 1987, 154 pp.

[7] Khairullina L. E., Ravnomernaya skhodimost priblizhennykh reshenii singulyarnogo integralnogo uravneniya pervogo roda s yadrom Koshi, Diss. $\dots$ k. f.-m. n., Kazan, 2011, 103 pp.

[8] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo KGU, Kazan, 1980, 232 pp. | MR