Estimates for some potential type operators whose kernels have singularities on spheres
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 1, pp. 12-23
Voir la notice de l'article provenant de la source Math-Net.Ru
Multidimensional convolution operators whose kernels have power-type singularities on a finite union of spheres in $\mathbb R^n$ are studied on Hardy spaces $H^p$, $0$. Necessary and sufficient conditions are obtained for such operators to be bounded from $H^p$ into the Holder space $\Lambda_s$, from $H^p$ into the Sobolev space $L_k^\infty$, and from BMO into $\Lambda_s$.
@article{VMJ_2014_16_1_a1, author = {M. N. Gurov and V. A. Nogin}, title = {Estimates for some potential type operators whose kernels have singularities on spheres}, journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal}, pages = {12--23}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/} }
TY - JOUR AU - M. N. Gurov AU - V. A. Nogin TI - Estimates for some potential type operators whose kernels have singularities on spheres JO - Vladikavkazskij matematičeskij žurnal PY - 2014 SP - 12 EP - 23 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/ LA - ru ID - VMJ_2014_16_1_a1 ER -
M. N. Gurov; V. A. Nogin. Estimates for some potential type operators whose kernels have singularities on spheres. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 1, pp. 12-23. http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/