Estimates for some potential type operators whose kernels have singularities on spheres
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 1, pp. 12-23

Voir la notice de l'article provenant de la source Math-Net.Ru

Multidimensional convolution operators whose kernels have power-type singularities on a finite union of spheres in $\mathbb R^n$ are studied on Hardy spaces $H^p$, $0$. Necessary and sufficient conditions are obtained for such operators to be bounded from $H^p$ into the Holder space $\Lambda_s$, from $H^p$ into the Sobolev space $L_k^\infty$, and from BMO into $\Lambda_s$.
@article{VMJ_2014_16_1_a1,
     author = {M. N. Gurov and V. A. Nogin},
     title = {Estimates for some potential type operators whose kernels have singularities on spheres},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {12--23},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/}
}
TY  - JOUR
AU  - M. N. Gurov
AU  - V. A. Nogin
TI  - Estimates for some potential type operators whose kernels have singularities on spheres
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 12
EP  - 23
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/
LA  - ru
ID  - VMJ_2014_16_1_a1
ER  - 
%0 Journal Article
%A M. N. Gurov
%A V. A. Nogin
%T Estimates for some potential type operators whose kernels have singularities on spheres
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 12-23
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/
%G ru
%F VMJ_2014_16_1_a1
M. N. Gurov; V. A. Nogin. Estimates for some potential type operators whose kernels have singularities on spheres. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 1, pp. 12-23. http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/