Estimates for some potential type operators whose kernels have singularities on spheres
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 1, pp. 12-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multidimensional convolution operators whose kernels have power-type singularities on a finite union of spheres in $\mathbb R^n$ are studied on Hardy spaces $H^p$, $0. Necessary and sufficient conditions are obtained for such operators to be bounded from $H^p$ into the Holder space $\Lambda_s$, from $H^p$ into the Sobolev space $L_k^\infty$, and from BMO into $\Lambda_s$.
@article{VMJ_2014_16_1_a1,
     author = {M. N. Gurov and V. A. Nogin},
     title = {Estimates for some potential type operators whose kernels have singularities on spheres},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {12--23},
     year = {2014},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/}
}
TY  - JOUR
AU  - M. N. Gurov
AU  - V. A. Nogin
TI  - Estimates for some potential type operators whose kernels have singularities on spheres
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 12
EP  - 23
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/
LA  - ru
ID  - VMJ_2014_16_1_a1
ER  - 
%0 Journal Article
%A M. N. Gurov
%A V. A. Nogin
%T Estimates for some potential type operators whose kernels have singularities on spheres
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 12-23
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/
%G ru
%F VMJ_2014_16_1_a1
M. N. Gurov; V. A. Nogin. Estimates for some potential type operators whose kernels have singularities on spheres. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 1, pp. 12-23. http://geodesic.mathdoc.fr/item/VMJ_2014_16_1_a1/

[1] Nogin V. A., Luzhetskaya P. A., “Inversion and description of the ranges of multiplier operators of Strichartz–Peral–Miyachi-type”, Fract. Calc. Appl. Anal., 3:1 (2000), 87–96 | MR | Zbl

[2] Nogin V. A., Karasev D. N., “On the $\mathcal L$-characteristic of some potential-type operators with radial kernels, having singularities on a sphere”, Fract. Calc. Appl. Anal., 4:3 (2001), 343–366 | MR | Zbl

[3] Karapetyants A. N., Karasev D. N., Nogin V. A., “Otsenki dlya nekotorykh operatorov tipa potentsiala s ostsilliruyuschimi yadrami”, Izv. nats. akad. nauk Armenii, 38:2 (2003), 37–62 | MR | Zbl

[4] Gil A. V., Nogin V. A., “Otsenki dlya nekotorykh operatorov tipa potentsiala s ostsilliruyuschimi simvolami”, Vladikavk. mat. zhurn., 12:3 (2010), 21–29 | MR | Zbl

[5] Fefferman C. L., Stein E. M., “$H^p$-spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl

[6] Miyachi A., “On some singular Fourier multipliers”, J. Fac. Sci. Univ. Tokyo: Sect. IA Math., 28 (1981), 267–315 | MR | Zbl

[7] Miyachi A., “Notes on Fourier multipliers for $H^p$, $BMO$ and the Lipschitz spaces”, J. Fac. Sci. Univ. Tokyo: Sect. IA Math., 30:2 (1983), 221–242 | MR | Zbl

[8] Samko S. G., Hypersingular Integrals and their Applications, Analytical Methods and Special Functions, 5, Taylor Frances, London, 2002, 359 pp. | MR | Zbl

[9] Stein E. M., Harmonic Analysis: Real-variable method, Orthogonality, and Oscillatory Integrls, Princeton Univ. Press, Princeton, 1993 | MR

[10] Vatson G. N., Teoriya besselevykh funktsii, Izd-vo inostr. lit-ry, M., 1949, 798 pp.

[11] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, 368 pp. | MR

[12] Gil A. V., Zadorozhnyi A. I., Nogin V. A., “Otsenki dlya nekotorykh operatorov svertki s osobennostyami yader na sferakh”, Vestn. Samarskogo gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 2011, no. 2(23), 17–23 | DOI

[13] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1971, 1108 pp.