Solvability of the Cauchy problem for the Aller equation in space of bounded continuous functions
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 65-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solvability of the Cauchy problem for Aller differential equation is reduced to the abstract Cauchy problem in Banach space of bounded continuous functions on the real axis.
@article{VMJ_2013_15_4_a8,
     author = {Kh. G. Umarov},
     title = {Solvability of the {Cauchy} problem for the {Aller} equation in space of bounded continuous functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {65--75},
     year = {2013},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a8/}
}
TY  - JOUR
AU  - Kh. G. Umarov
TI  - Solvability of the Cauchy problem for the Aller equation in space of bounded continuous functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 65
EP  - 75
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a8/
LA  - ru
ID  - VMJ_2013_15_4_a8
ER  - 
%0 Journal Article
%A Kh. G. Umarov
%T Solvability of the Cauchy problem for the Aller equation in space of bounded continuous functions
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 65-75
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a8/
%G ru
%F VMJ_2013_15_4_a8
Kh. G. Umarov. Solvability of the Cauchy problem for the Aller equation in space of bounded continuous functions. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 65-75. http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a8/

[1] Chudnovskii A. F., Teplofizika pochv, Nauka, M., 1976, 352 pp.

[2] Nakhushev A. M., “O nekotorykh sposobakh linearizatsii uravnenii dvizheniya gruntovykh vod i pochvennoi vlagi”, Kraevye zadachi dlya uravnenii smeshannogo tipa i rodstvennye problemy funktsionalnogo analiza i prikladnoi matematiki, 2, KBGU, Nalchik, 1979, 173–183

[3] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp. | Zbl

[4] Soldatov A. P., Shkhanukov M. Kh., “Kraevye zadachi s obschim nelokalnym usloviem A. A. Samarskogo dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, Dokl. AN SSSR, 297:3 (1987), 547–552 | MR

[5] Kozhanov A. I., “Ob odnoi nelokalnoi kraevoi zadache s peremennymi koeffitsientami dlya uravneniya teploprovodnosti i Allera”, Dif. uravneniya, 40:6 (2004), 763–774 | MR | Zbl

[6] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit-ry, M., 1962, 895 pp.

[7] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[8] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971, 104 pp. | MR

[9] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 500 pp. | MR | Zbl

[10] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vyssh. shkola, M., 1982, 271 pp. | MR | Zbl

[11] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer-Verlag, N.Y., 1983, 279 pp. | DOI | MR | Zbl

[12] Appell J., Zabreiko P. P., Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 1990, 320 pp. | MR | Zbl

[13] Filatov A. N., Sharova L. V., Integralnye neravenstva i teoriya nelineinykh kolebanii, Nauka, M., 1976, 152 pp. | MR | Zbl