The locally-one-dimensional scheme for the equation of heat conductivity with the concentrated thermal capacity
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 58-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to locally-one-dimensional schemes for the equation of heat conductivity with a non-stationary boundary condition which imitate a concentrated thermal capacity placed on domain boundary. A priori estimate in the uniform metrics is obtained and the convergence of the constructed scheme on a cubic net is proved.
@article{VMJ_2013_15_4_a7,
     author = {M. Kh. Shkhanukov and M. M. Lafisheva and F. M. Nakhusheva and A. B. Mambetova},
     title = {The locally-one-dimensional scheme for the equation of heat conductivity with the concentrated thermal capacity},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {58--64},
     year = {2013},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a7/}
}
TY  - JOUR
AU  - M. Kh. Shkhanukov
AU  - M. M. Lafisheva
AU  - F. M. Nakhusheva
AU  - A. B. Mambetova
TI  - The locally-one-dimensional scheme for the equation of heat conductivity with the concentrated thermal capacity
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 58
EP  - 64
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a7/
LA  - ru
ID  - VMJ_2013_15_4_a7
ER  - 
%0 Journal Article
%A M. Kh. Shkhanukov
%A M. M. Lafisheva
%A F. M. Nakhusheva
%A A. B. Mambetova
%T The locally-one-dimensional scheme for the equation of heat conductivity with the concentrated thermal capacity
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 58-64
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a7/
%G ru
%F VMJ_2013_15_4_a7
M. Kh. Shkhanukov; M. M. Lafisheva; F. M. Nakhusheva; A. B. Mambetova. The locally-one-dimensional scheme for the equation of heat conductivity with the concentrated thermal capacity. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 58-64. http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a7/

[1] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1996, 724 pp. | MR

[2] Samarskii A. A., “Ob odnoi zadache rasprostraneniya tepla”, Izbr. tr. A. A. Samarskogo, MAKS Press, M., 2003, 1–22 | MR

[3] Nerpin S. V., Chudnovskii A. F., Energo- i massoobmen v sisteme rastenie–pochva–vozdukh, Gidrometeoizdat, L., 1975, 358 pp.

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1973

[5] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp. | Zbl