Constructive descriptions of $n$-sequentially connected graphs
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 48-57

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of nonoriented $n$-sequentially connected graphs is introduced and some applications are considered. The main characteristics and properties of $n$-sequentially connected chains are given. The relations of the class of $n$-sequentially connected chains to perfect, triangulated, composite and splittable classes of graphs are determined.
@article{VMJ_2013_15_4_a6,
     author = {R. E. Shangin},
     title = {Constructive descriptions of $n$-sequentially connected graphs},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {48--57},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a6/}
}
TY  - JOUR
AU  - R. E. Shangin
TI  - Constructive descriptions of $n$-sequentially connected graphs
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 48
EP  - 57
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a6/
LA  - ru
ID  - VMJ_2013_15_4_a6
ER  - 
%0 Journal Article
%A R. E. Shangin
%T Constructive descriptions of $n$-sequentially connected graphs
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 48-57
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a6/
%G ru
%F VMJ_2013_15_4_a6
R. E. Shangin. Constructive descriptions of $n$-sequentially connected graphs. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 48-57. http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a6/