@article{VMJ_2013_15_4_a6,
author = {R. E. Shangin},
title = {Constructive descriptions of $n$-sequentially connected graphs},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {48--57},
year = {2013},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a6/}
}
R. E. Shangin. Constructive descriptions of $n$-sequentially connected graphs. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 48-57. http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a6/
[1] Bykova V. V., “Vychislitelnye aspekty drevovidnoi shiriny grafa”, Prikladnaya diskretnaya matematika, 2011, no. 3(13), 65–79
[2] Panyukov A. V., Peltsverger B. F., Shafir A. Yu., “Optimalnoe razmeschenie tochek vetvleniya transportnoi seti na tsifrovoi modeli mestnosti”, Avtomatika i telemekhanika, 1990, no. 9, 153–162 | MR | Zbl
[3] Sergeev S. I., “Kvadratichnaya zadacha o naznacheniyakh. I”, Avtomatika i telemekhanika, 1999, no. 8, 127–147 | MR | Zbl
[4] Shangin R. E., “Determinirovannyi algoritm dlya resheniya zadachi Vebera dlya $n$-posledovatelnosvyaznoi tsepi”, XIII Vserossiiskaya konf. molodykh uchenykh po mat. modelirovaniyu i informatsionnym tekhnologiyam (Novosibirsk, 15–17 oktyabrya 2012 g.), (data obrascheniya 15.10.2012) URL: http://conf.nsc.ru/ym2012/ru/reportview/137128.pdf
[5] Shangin R. E., “Kvazipolinomialnyi algoritm dlya resheniya zadachi Vebera dlya $n$-posledovatelnosvyaznogo tsikla”, Obozrenie prikladnoi i promyshlennoi matematiki, 19:4 (2012), 601–603
[6] Shangin R. E., “Issledovanie effektivnosti priblizhennykh algoritmov resheniya odnogo chastnogo sluchaya zadachi Vebera”, Ekonomika, statistika i informatika. Vestnik UMO, 2012, no. 1, 163–169
[7] Dirac G. A., “On rigid circuit graphs”, Abhandlungen aus dem Math. Seminar der Universität Hamburg, 25 (1961), 71–76 | DOI | MR | Zbl
[8] McKee T. A., “On the chordality of a graph”, J. of Graph Theory, 17 (1993), 221–232 | DOI | MR | Zbl
[9] Panyukov A. V., Pelzwerge B. V., “Polynomial algorithms to finite veber problem for a tree network”, J. of Comp. and Appl. Math., 35 (1991), 291–296 | DOI | MR | Zbl