Constructive descriptions of $n$-sequentially connected graphs
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 48-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The class of nonoriented $n$-sequentially connected graphs is introduced and some applications are considered. The main characteristics and properties of $n$-sequentially connected chains are given. The relations of the class of $n$-sequentially connected chains to perfect, triangulated, composite and splittable classes of graphs are determined.
@article{VMJ_2013_15_4_a6,
     author = {R. E. Shangin},
     title = {Constructive descriptions of $n$-sequentially connected graphs},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {48--57},
     year = {2013},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a6/}
}
TY  - JOUR
AU  - R. E. Shangin
TI  - Constructive descriptions of $n$-sequentially connected graphs
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 48
EP  - 57
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a6/
LA  - ru
ID  - VMJ_2013_15_4_a6
ER  - 
%0 Journal Article
%A R. E. Shangin
%T Constructive descriptions of $n$-sequentially connected graphs
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 48-57
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a6/
%G ru
%F VMJ_2013_15_4_a6
R. E. Shangin. Constructive descriptions of $n$-sequentially connected graphs. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 48-57. http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a6/

[1] Bykova V. V., “Vychislitelnye aspekty drevovidnoi shiriny grafa”, Prikladnaya diskretnaya matematika, 2011, no. 3(13), 65–79

[2] Panyukov A. V., Peltsverger B. F., Shafir A. Yu., “Optimalnoe razmeschenie tochek vetvleniya transportnoi seti na tsifrovoi modeli mestnosti”, Avtomatika i telemekhanika, 1990, no. 9, 153–162 | MR | Zbl

[3] Sergeev S. I., “Kvadratichnaya zadacha o naznacheniyakh. I”, Avtomatika i telemekhanika, 1999, no. 8, 127–147 | MR | Zbl

[4] Shangin R. E., “Determinirovannyi algoritm dlya resheniya zadachi Vebera dlya $n$-posledovatelnosvyaznoi tsepi”, XIII Vserossiiskaya konf. molodykh uchenykh po mat. modelirovaniyu i informatsionnym tekhnologiyam (Novosibirsk, 15–17 oktyabrya 2012 g.), (data obrascheniya 15.10.2012) URL: http://conf.nsc.ru/ym2012/ru/reportview/137128.pdf

[5] Shangin R. E., “Kvazipolinomialnyi algoritm dlya resheniya zadachi Vebera dlya $n$-posledovatelnosvyaznogo tsikla”, Obozrenie prikladnoi i promyshlennoi matematiki, 19:4 (2012), 601–603

[6] Shangin R. E., “Issledovanie effektivnosti priblizhennykh algoritmov resheniya odnogo chastnogo sluchaya zadachi Vebera”, Ekonomika, statistika i informatika. Vestnik UMO, 2012, no. 1, 163–169

[7] Dirac G. A., “On rigid circuit graphs”, Abhandlungen aus dem Math. Seminar der Universität Hamburg, 25 (1961), 71–76 | DOI | MR | Zbl

[8] McKee T. A., “On the chordality of a graph”, J. of Graph Theory, 17 (1993), 221–232 | DOI | MR | Zbl

[9] Panyukov A. V., Pelzwerge B. V., “Polynomial algorithms to finite veber problem for a tree network”, J. of Comp. and Appl. Math., 35 (1991), 291–296 | DOI | MR | Zbl