Extremal values of the volume of $3$-dimensional parallelepipeds with a given intrinsic diameter
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 44-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that a parallelepiped with relation $a:b:c=1:1:\sqrt2$ for its edge lengths has maximal volume among all rectangular parallelepipeds with a given intrinsic diameter.
@article{VMJ_2013_15_4_a5,
     author = {N. V. Rasskazova},
     title = {Extremal values of the volume of $3$-dimensional parallelepipeds with a~given intrinsic diameter},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {44--47},
     year = {2013},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a5/}
}
TY  - JOUR
AU  - N. V. Rasskazova
TI  - Extremal values of the volume of $3$-dimensional parallelepipeds with a given intrinsic diameter
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 44
EP  - 47
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a5/
LA  - ru
ID  - VMJ_2013_15_4_a5
ER  - 
%0 Journal Article
%A N. V. Rasskazova
%T Extremal values of the volume of $3$-dimensional parallelepipeds with a given intrinsic diameter
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 44-47
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a5/
%G ru
%F VMJ_2013_15_4_a5
N. V. Rasskazova. Extremal values of the volume of $3$-dimensional parallelepipeds with a given intrinsic diameter. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 44-47. http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a5/

[1] Vyalyi M. N., “Kratchaishie puti po poverkhnosti parallelepipeda”, Matematicheskoe prosveschenie, ser. 3, 9, Izd-vo MTsNMO, M., 2005, 203–206

[2] Nikonorov Yu. G., Nikonorova Yu. V., “O vnutrennem rasstoyanii na poverkhnosti parallelepipeda”, Tr. Rubtsovskogo industr. in-ta, 9, 2000, 222–228

[3] Rasskazova N. V., “Ekstremalnye znacheniya integrala srednei krivizny na mnozhestve parallelepipedov s zadannym geodezicheskim diametrom”, Vladikavkaz. mat. zhurn., 15:2 (2013), 77–81 | MR

[4] Santalo L. A., Integralnaya geometriya i geometricheskie veroyatnosti, Nauka, M., 1983 | MR | Zbl

[5] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, Nauka, M., 1966

[6] Nikonorov Yu. G., Nikonorova Yu. V., “The intrinsic diameter of the surface of a parallelepiped”, Discrete and Computational Geometry, 40 (2008), 504–527 | DOI | MR | Zbl