@article{VMJ_2013_15_4_a5,
author = {N. V. Rasskazova},
title = {Extremal values of the volume of $3$-dimensional parallelepipeds with a~given intrinsic diameter},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {44--47},
year = {2013},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a5/}
}
TY - JOUR AU - N. V. Rasskazova TI - Extremal values of the volume of $3$-dimensional parallelepipeds with a given intrinsic diameter JO - Vladikavkazskij matematičeskij žurnal PY - 2013 SP - 44 EP - 47 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a5/ LA - ru ID - VMJ_2013_15_4_a5 ER -
N. V. Rasskazova. Extremal values of the volume of $3$-dimensional parallelepipeds with a given intrinsic diameter. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 44-47. http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a5/
[1] Vyalyi M. N., “Kratchaishie puti po poverkhnosti parallelepipeda”, Matematicheskoe prosveschenie, ser. 3, 9, Izd-vo MTsNMO, M., 2005, 203–206
[2] Nikonorov Yu. G., Nikonorova Yu. V., “O vnutrennem rasstoyanii na poverkhnosti parallelepipeda”, Tr. Rubtsovskogo industr. in-ta, 9, 2000, 222–228
[3] Rasskazova N. V., “Ekstremalnye znacheniya integrala srednei krivizny na mnozhestve parallelepipedov s zadannym geodezicheskim diametrom”, Vladikavkaz. mat. zhurn., 15:2 (2013), 77–81 | MR
[4] Santalo L. A., Integralnaya geometriya i geometricheskie veroyatnosti, Nauka, M., 1983 | MR | Zbl
[5] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, Nauka, M., 1966
[6] Nikonorov Yu. G., Nikonorova Yu. V., “The intrinsic diameter of the surface of a parallelepiped”, Discrete and Computational Geometry, 40 (2008), 504–527 | DOI | MR | Zbl