Positive lifting in a measurable bundle of Banach lattices
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 12-13
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that every positive lifting in a measurable bundle of Banach lattices is a lattice homomorphism.
@article{VMJ_2013_15_4_a1,
author = {A. E. Gutman},
title = {Positive lifting in a~measurable bundle of {Banach} lattices},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {12--13},
year = {2013},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a1/}
}
A. E. Gutman. Positive lifting in a measurable bundle of Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 12-13. http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a1/
[1] Ganiev I. G., “Izmerimye rassloeniya reshetok i ikh prilozheniya”, Issledovaniya po funktsionalnomu analizu i ego prilozheniyam, Nauka, M., 2005, 9–49
[2] Luxemburg W. A. J., Zaanen A. C., Riesz Spaces, v. I, North-Holland Publ. Co.,, Amsterdam–London, 1971 | MR | Zbl
[3] Abramovich Yu. A., “Ob izometriyakh normirovannykh reshetok”, Optimizatsiya, 1988, no. 43(60), 74–80 | MR | Zbl
[4] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Izd-vo IM SO RAN, Novosibirsk, 1995, 63–211 | MR