Nonlinear integral equations with potential type kernels on a semiaxis
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In complex Lebesgue spaces, by method of monotone operators, theorems on existence, uniqueness and methods of finding solutions are proved for some classes of nonlinear integral equations with potential type kernels. Some estimations for the norms of solution and the rate of convergence of the Picard type successive approximations are obtained.
@article{VMJ_2013_15_4_a0,
     author = {S. N. Askhabov},
     title = {Nonlinear integral equations with potential type kernels on a~semiaxis},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--11},
     year = {2013},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Nonlinear integral equations with potential type kernels on a semiaxis
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 3
EP  - 11
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a0/
LA  - ru
ID  - VMJ_2013_15_4_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Nonlinear integral equations with potential type kernels on a semiaxis
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 3-11
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a0/
%G ru
%F VMJ_2013_15_4_a0
S. N. Askhabov. Nonlinear integral equations with potential type kernels on a semiaxis. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 4, pp. 3-11. http://geodesic.mathdoc.fr/item/VMJ_2013_15_4_a0/

[1] Moroz V. B., “Uravneniya Gammershteina s yadrami tipa potentsiala Rissa”, Tr. mezhdunar. konf. “Kraevye zadachi, spetsialnye funktsii i drobnoe ischislenie”, Belarus, Minsk, 1996, 249–254 | MR

[2] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009, 304 pp. | MR

[3] Tracy C. A., Widom H., “Fredgolm determinantes, differential equations and matrix models”, Communications in Math. Physics, 163:2 (1994), 33–72 | DOI | MR | Zbl

[4] Askhabov S. N., “Singular integral equations with monotone nonlinearity in complex Lebesgue spaces”, Zeitschrift fur Analysis und ihre Anwendungen, 11:1 (1992), 77–84 | MR | Zbl

[5] Askhabov S. N., “Nonlinear singular integral equations in Lebesgue spaces”, J. Math. Sci., 173:2 (2011), 155–171 | DOI | MR | Zbl

[6] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR

[7] Dubinskii Yu. A., “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 9, VINITI AN SSSR, M., 1976, 5–130 | Zbl

[8] Askhabov S. N., “Primenenie metoda monotonnykh operatorov k nekotorym nelineinym uravneniyam tipa svertki i singulyarnym integralnym uravneniyam”, Izv. vysshikh uchebnykh zavedenii. Matematika, 1981, no. 9, 64–66 | MR | Zbl

[9] Askhabov S. N., Mukhtarov Kh. Sh., “Otsenki reshenii nekotorykh nelineinykh uravnenii tipa svertki i singulyarnykh integralnykh uravnenii”, Dokl. AN SSSR, 288:2 (1986), 275–278 | MR | Zbl

[10] Askhabov S. N., Mukhtarov Kh. Sh., “Ob odnom klasse nelineinykh integralnykh uravnenii tipa svertki”, Dif. uravneniya, 23:3 (1987), 512–514 | MR | Zbl