Generalized functional calculus on vector lattices
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 77-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalized functional calculus on vector lattices is constructed. An interplay between Minkowski duality and generalized functional calculus is investigated and some convexity inequalities are proved.
@article{VMJ_2013_15_3_a8,
     author = {B. B. Tasoev},
     title = {Generalized functional calculus on vector lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {77--88},
     year = {2013},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a8/}
}
TY  - JOUR
AU  - B. B. Tasoev
TI  - Generalized functional calculus on vector lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 77
EP  - 88
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a8/
LA  - ru
ID  - VMJ_2013_15_3_a8
ER  - 
%0 Journal Article
%A B. B. Tasoev
%T Generalized functional calculus on vector lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 77-88
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a8/
%G ru
%F VMJ_2013_15_3_a8
B. B. Tasoev. Generalized functional calculus on vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 77-88. http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a8/

[1] Kusraev A. G., Tabuev S. N., “O multiplikativnom predstavlenii bilineinykh operatorov”, Sib. mat. zhurn., 49:2 (2008), 357–366 | MR | Zbl

[2] Kutateladze S. S., Rubinov A. M., Dvoistvennost Minkovskogo i ee prilozheniya, Nauka, Novosibirsk, 1976, 250 pp. | MR

[3] Aliprantis C. D., Burkinshaw O., Positive Operators, Academic Press, N.Y., 1985, xvi+367 pp. | MR | Zbl

[4] Buskes G., de Pagter. B., van Rooij. A., “Functional calculus on Riesz spaces”, Indag. Math. (N.S.)., 4:2 (1991), 423–436 | DOI | MR | Zbl

[5] Fremlin D. H., “Tensor products of Archimedean vector lattices”, Amer. J. Math., 94 (1972), 778–798 | DOI | MR

[6] Haydon R., Levy M., Raynaud Y., Randomly Normed Spaces, Hermann, Paris, 1991, 138 pp. | MR | Zbl

[7] Kusraev A. G., Homogeneous Functional Calculus on Vector Lattices, Preprint No 1, Vladikavkaz, 2008, 34 pp.

[8] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. 2, Function Spaces, Springer-Verlag, Berlin etc., 1979, 243 pp. | MR | Zbl

[9] Luxemburg W. A. J., Zaanen A. C., Riesz Spaces, v. 1, North-Holland, Amsterdam–London, 1971, 514 pp. | MR | Zbl

[10] Meyer-Nieberg P., Banach Lattices, Springer, Berlin etc., 1991, xvi+395 pp. | MR | Zbl