Geodesic orbit Riemannian metrics on spheres
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 67-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a complete classification of geodesic orbit Riemannian metrics on spheres $S^n$ is obtained. We also construct some explicit examples of geodesic vectors for $Sp(n+1)U(1)$-invariant metrics on $S^{4n+3}$.
@article{VMJ_2013_15_3_a7,
     author = {Yu. G. Nikonorov},
     title = {Geodesic orbit {Riemannian} metrics on spheres},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {67--76},
     year = {2013},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a7/}
}
TY  - JOUR
AU  - Yu. G. Nikonorov
TI  - Geodesic orbit Riemannian metrics on spheres
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 67
EP  - 76
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a7/
LA  - en
ID  - VMJ_2013_15_3_a7
ER  - 
%0 Journal Article
%A Yu. G. Nikonorov
%T Geodesic orbit Riemannian metrics on spheres
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 67-76
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a7/
%G en
%F VMJ_2013_15_3_a7
Yu. G. Nikonorov. Geodesic orbit Riemannian metrics on spheres. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 67-76. http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a7/

[1] Alekseevsky D. V., Arvanitoyeorgos A., “Riemannian flag manifolds with homogeneous geodesics”, Trans. Amer. Math. Soc., 359 (2007), 3769–3789 | DOI | MR | Zbl

[2] Alekseevsky D. V., Nikonorov Yu. G., “Compact Riemannian manifolds with homogeneous geodesics”, SIGMA Symmetry Integrability Geom. Methods Appl., 5 (2009), 093, 16 pp. | DOI | MR | Zbl

[3] Akhiezer D. N., Vinberg É. B., “Weakly symmetric spaces and spherical varieties”, Transf. Groups, 4 (1999), 3–24 | DOI | MR | Zbl

[4] Berestovskii V. N., Nikitenko E. V., Nikonorov Yu. G., “Classification of generalized normal homogeneous Riemannian manifolds of positive Euler characteristic”, Dif. Geom. Appl., 29:4 (2011), 533–546 | DOI | MR

[5] Berestovskii V. N., Nikonorov Yu. G., “On $\delta$-homogeneous Riemannian manifolds”, Dif. Geom. Appl., 26:5 (2008), 514–535 | DOI | MR | Zbl

[6] Berestovskii V. N., Nikonorov Yu. G., “On $\delta$-homogeneous Riemannian manifolds, II”, Siber. Math. J., 50:2 (2009), 214–222 | DOI | MR

[7] Berestovskii V. N., Nikonorov Yu. G., “Clifford-Wolf homogeneous Riemannian manifolds”, J. Dif. Geom., 82:3 (2009), 467–500 | MR | Zbl

[8] Berestovskii V. N., Nikonorov Yu. G., Riemannian Manifolds and Homogeneous Geodesics, SMI VSC RAS, Vladikavkaz, 2012, 412 pp. (Russian)

[9] Berestovskii V. N., Nikonorov Yu. G., “Generalized normal homogeneous Riemannian metrics on spheres and projective spaces”, Ann. Glob. Anal. Geom., 2013 ; arXiv: 1210.7727 | DOI

[10] Berger M., “Les varietes riemanniennes homogenes normales a courbure strictement positive”, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV Ser., 15 (1961), 179–246 | MR | Zbl

[11] Berndt J., Kowalski O., Vanhecke L., “Geodesics in weakly symmetric spaces”, Ann. Global Anal. Geom., 15 (1997), 153–156 | DOI | MR | Zbl

[12] Besse A. L., Einstein Manifolds, Springer-Verlag, Berlin, 1987 | MR | Zbl

[13] Cartan É., “Sur une classe remarquable d'espaces de Riemann. I”, Bull. Soc. Math. de France, 54 (1926), 214–264 ; “Sur une classe remarquable d'espaces de Riemann. II”, Bull. Soc. Math. de France, 55 (1927), 114–134 | MR | Zbl | MR | Zbl

[14] Dus̆ek Z., Kowalski O., Nikc̆ević S., “New examples of Riemannian g.o. manifolds in dimension 7”, Diff. Geom. Appl., 21 (2004), 65–78 | DOI | MR

[15] Gordon C., “Homogeneous Riemannian manifolds whose geodesics are orbits”, Topics in geometry, In memory of Joseph D'Atri, Progress in Nonlinear Differential Equations, 20, Birkhäuser, 1996, 155–174 | MR | Zbl

[16] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, John Wiley Sons, N.Y., 1963 ; v. II, John Wiley Sons, N.Y., 1969 | Zbl | Zbl

[17] Kowalski O., Vanhecke L., “Riemannian manifolds with homogeneous geodesics”, Boll. Unione Mat. Ital. Ser. B, 5:1 (1991), 189–246 | MR | Zbl

[18] Montgomery D., Samelson H., “Transformation groups on spheres”, Ann. of Math., 44 (1943), 454–470 | DOI | MR | Zbl

[19] Nikonorov Yu. G., “Geodesic orbit manifolds and Killing fields of constant length”, Hiroshima Math. J., 43:1 (2013), 129–137 | MR | Zbl

[20] Onishchik A. L., Topology of Transitive Transformation Groups, Johann Ambrosius Barth, Leipzig–Berlin–Heidelberg, 1994 | MR | Zbl

[21] Selberg A., “Harmonic Analysis and discontinuous groups in weakly symmetric riemannian spaces, with applications to Dirichlet series”, J. Indian Math. Soc., 20 (1956), 47–87 | MR | Zbl

[22] Tamaru H., “Riemannin geodesic orbit metrics on fiber bundles”, Algebra Groups Geom., 15 (1998), 55–67 | MR | Zbl

[23] Tamaru H., “Riemannin g.o. spaces fibered over irreducible symmetric spaces”, Osaka J. Math., 36 (1999), 835–851 | MR | Zbl

[24] Wolf J. A., Harmonic Analysis on Commutative Spaces, Amer. Math. Soc., Providence, R.I., 2007, XVI+387 pp. | MR

[25] Sb. Math., 195:3–4 (2004), 599–614 | DOI | DOI | MR | Zbl

[26] Ziller W., “The Jacobi equation on naturally reductive compact Riemannian homogeneous spaces”, Comment. Math. Helv., 52 (1977), 573–590 | DOI | MR | Zbl

[27] Ziller W., “Homogeneous Einstein metrics on Spheres and projective spaces”, Math. Ann., 259 (1982), 351–358 | DOI | MR | Zbl

[28] Ziller W., “Weakly symmetric spaces”, Topics in geometry, In memory of Joseph D'Atri, Progress in Nonlinear Dif. Eq., 20, Birkhäuser, 1996, 355–368 | MR | Zbl