Algebraic band preserving operators
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 54-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that for a universally complete vector lattice $E$ the following are equivalent: (1) the Boolean algebra of band projections $\mathbb P(E)$ is $\sigma$-distributive; (2) every algebraic band preserving operator in $E$ is strongly diagonal; (3) every band preserving projection in $E$ is a band projection.
@article{VMJ_2013_15_3_a5,
     author = {Z. A. Kusraeva},
     title = {Algebraic band preserving operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {54--57},
     year = {2013},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a5/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
TI  - Algebraic band preserving operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 54
EP  - 57
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a5/
LA  - ru
ID  - VMJ_2013_15_3_a5
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%T Algebraic band preserving operators
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 54-57
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a5/
%G ru
%F VMJ_2013_15_3_a5
Z. A. Kusraeva. Algebraic band preserving operators. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 54-57. http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a5/

[1] Abramovich Yu. A., Veksler A. I., Koldunov A. V., “Operatory, sokhranyayuschie diz'yunktnost”, Dokl. AN SSSR, 248:5 (1979), 1033–1036 | MR | Zbl

[2] Abramovich Yu. A., Veksler A. I., Koldunov A. V., “Operatory, sokhranyayuschie diz'yunktnost, ikh nepreryvnost i multiplikativnoe predstavlenie”, Lineinye operatory i ikh prilozheniya, Mezhvuz. sb. nauch. tr., LGPI, L., 1981, 3–34

[3] Kusraev A. G., Mazhoriruemye operatory, Nauka, M., 2003, 619 pp. | MR

[4] Abramovich Yu. A., Kitover A. K., Inverses of disjointness preserving operators, Memoirs of the American Mathematical Society, 143, no. 679, 2000 | DOI | MR

[5] Abramovich Yu. A., Kitover A. K., “$d$-Independence and $d$-basis in vector lattices”, Rev. Roumaine Math. Pures Appl., 44:5–6 (1999), 667–682 | MR | Zbl

[6] Abramovich Yu., Wickstead A., “The regularity of order bounded operators into $C(K)$”, Quart. J. Math. Oxford, Ser. 2, 44 (1993), 257–270 | DOI | MR | Zbl

[7] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press Inc., London, 1985 | MR | Zbl

[8] Boulabiar K., Buskes G., Sirotkin G., “Algebraic order bounded disjointness preserving operators and strongly diagonal operators”, Integral Equations and Operator Theory, 54 (2006), 9–31 | DOI | MR | Zbl

[9] Gutman A. E., “Locally one-dimentional $K$-spaces and $\sigma$-distributive Boolean algebras”, Siberian Adv. Math., 5:2 (1995), 99–121 | MR

[10] Gutman A. E., Kusraev A. G., Kutateladze S. S., “The Wickstead problem”, Siberian Electronic Math. Reports, 5 (2008), 293–333 | MR | Zbl

[11] McPolin P. T. N., Wickstead A. W., “The order boundedness of band preserving operators on uniformly complete vector lattices”, Math. Proc. Cambridge Philos. Soc., 97:3 (1985), 481–487 | DOI | MR | Zbl

[12] Wickstead A. W., “Representation and duality of multiplication operators on Archimedean Riesz spaces”, Comp. Math., 35:3 (1977), 225–238 | MR | Zbl