Algebraic band preserving operators
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 54-57

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for a universally complete vector lattice $E$ the following are equivalent: (1) the Boolean algebra of band projections $\mathbb P(E)$ is $\sigma$-distributive; (2) every algebraic band preserving operator in $E$ is strongly diagonal; (3) every band preserving projection in $E$ is a band projection.
@article{VMJ_2013_15_3_a5,
     author = {Z. A. Kusraeva},
     title = {Algebraic band preserving operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {54--57},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a5/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
TI  - Algebraic band preserving operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 54
EP  - 57
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a5/
LA  - ru
ID  - VMJ_2013_15_3_a5
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%T Algebraic band preserving operators
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 54-57
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a5/
%G ru
%F VMJ_2013_15_3_a5
Z. A. Kusraeva. Algebraic band preserving operators. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 54-57. http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a5/