Algebraic band preserving operators
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 54-57
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that for a universally complete vector lattice $E$ the following are equivalent: (1) the Boolean algebra of band projections $\mathbb P(E)$ is $\sigma$-distributive; (2) every algebraic band preserving operator in $E$ is strongly diagonal; (3) every band preserving projection in $E$ is a band projection.
			
            
            
            
          
        
      @article{VMJ_2013_15_3_a5,
     author = {Z. A. Kusraeva},
     title = {Algebraic band preserving operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {54--57},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a5/}
}
                      
                      
                    Z. A. Kusraeva. Algebraic band preserving operators. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 54-57. http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a5/
