On division problem in nonradial weighted spaces of entire functions
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 7-18
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the inductive weighted space $H_{u,v}^{1,\infty}$ of entire functions defined by a sequence of nonradial two-part weights $\{q_nu(|z|)+nv(|\operatorname{Im}z|)\}_{n=1}^\infty$, $0$. Under an additional assumption on the function $v$, we establish the division theorem in $H_{u,v}^{1,\infty}$. We also obtain some results about sweepping out the masses of the subharmonic function $v(|\operatorname{Im}z|)$.
			
            
            
            
          
        
      @article{VMJ_2013_15_3_a1,
     author = {D. A. Abanina and A. V. Kuzminova},
     title = {On division problem in nonradial weighted spaces of entire functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a1/}
}
                      
                      
                    TY - JOUR AU - D. A. Abanina AU - A. V. Kuzminova TI - On division problem in nonradial weighted spaces of entire functions JO - Vladikavkazskij matematičeskij žurnal PY - 2013 SP - 7 EP - 18 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a1/ LA - ru ID - VMJ_2013_15_3_a1 ER -
D. A. Abanina; A. V. Kuzminova. On division problem in nonradial weighted spaces of entire functions. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 7-18. http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a1/
