Weighted Fréchet spaces of entire functions from the class of power series spaces of finite type
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 3-6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study weighted Fréchet spaces of entire functions given by weighted sequences of a general kind. We obtain some sufficient conditions under which they have Vogt–Wagner topological invariants and thus belong to the class of power series spaces of finite type.
@article{VMJ_2013_15_3_a0,
     author = {A. V. Abanin and P. S. Sergunin and Pham Trong Tien},
     title = {Weighted {Fr\'echet} spaces of entire functions from the class of power series spaces of finite type},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--6},
     year = {2013},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a0/}
}
TY  - JOUR
AU  - A. V. Abanin
AU  - P. S. Sergunin
AU  - Pham Trong Tien
TI  - Weighted Fréchet spaces of entire functions from the class of power series spaces of finite type
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 3
EP  - 6
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a0/
LA  - ru
ID  - VMJ_2013_15_3_a0
ER  - 
%0 Journal Article
%A A. V. Abanin
%A P. S. Sergunin
%A Pham Trong Tien
%T Weighted Fréchet spaces of entire functions from the class of power series spaces of finite type
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 3-6
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a0/
%G ru
%F VMJ_2013_15_3_a0
A. V. Abanin; P. S. Sergunin; Pham Trong Tien. Weighted Fréchet spaces of entire functions from the class of power series spaces of finite type. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 3, pp. 3-6. http://geodesic.mathdoc.fr/item/VMJ_2013_15_3_a0/

[1] Vogt D., “Charakterisierung der Potenzreihenräume von endlichem Typ”, Stud. Math., 71 (1982), 251–270 | MR | Zbl

[2] Wagner M. J., “Quotienten von stabilen Potenzreihenräumen endlichen Typs”, Manuscripta Math., 31 (1980), 269–301 | DOI | MR

[3] Meise R., Vogt D., Introduction to Functional Analysis, Oxford Univ. Press, New York, 1997, 448 pp. | MR | Zbl

[4] Haslinger F., “Weighted spaces of entire functions”, Indiana Univ. Math. J., 35:1 (1986), 193–208 | DOI | MR | Zbl

[5] Meise R., Taylor B. A., “A decomposition lemma for entire functions and its applications to spaces of ultradifferentiable functions”, Math. Nachr., 142 (1989), 45–72 | DOI | MR | Zbl

[6] Tidten M., “A geometric characterization for the property $(\underline{DN})$ of $\mathcal E(K)$ for arbitrary compact subset $K$ of $\mathbb R$”, Arch. Math., 77 (2001), 247–252 | DOI | MR | Zbl

[7] Akhtyamov N. T., Musin I. Kh., “O suschestvovanii bazisa v vesovom prostranstve tselykh funktsii”, Ufimskii mat. zhurn., 1:1 (2009), 3–15 | Zbl

[8] Abanin A. V., Sergunin P. S., “Topologicheskie invarianty vesovykh prostranstv golomorfnykh funktsii i ikh prilozheniya”, Poryadkovyi analiz i smezhnye voprosy mat. modelirovaniya, Tez. dokl. mezhdunar. nauch. konf. (Vladikavkaz, 14–20 iyulya 2013 g.), YuMI VNTs RAN i RSO-A, Vladikavkaz, 2013, 40–41

[9] Bierstedt K. D., Bonet J., Taskinen J., “Associated weights and spaces of holomorphic functions”, Stud. Math., 127 (1998), 137–168 | MR | Zbl

[10] Abanin A. V., Pham Trong Tien, “Continuation of holomorphic functions with growth conditions and some of its applications”, Stud. Math., 200:3 (2010), 279–295 | DOI | MR | Zbl