Extremal values of the integral of the mean curvature on the set of parallelepipeds with a~given geodesic diameter
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 2, pp. 77-81
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, extremal values of the mean curvature integral on set of parallelepipeds with a given geodesic diameter are obtained. The maximal (minimal) value of the integral of mean curvature is attained for a degenerate parallelepiped with relation $0:1:1$ ($0:0:1$, respectively) for its edge lengths.
@article{VMJ_2013_15_2_a8,
author = {N. V. Rasskazova},
title = {Extremal values of the integral of the mean curvature on the set of parallelepipeds with a~given geodesic diameter},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {77--81},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a8/}
}
TY - JOUR AU - N. V. Rasskazova TI - Extremal values of the integral of the mean curvature on the set of parallelepipeds with a~given geodesic diameter JO - Vladikavkazskij matematičeskij žurnal PY - 2013 SP - 77 EP - 81 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a8/ LA - ru ID - VMJ_2013_15_2_a8 ER -
%0 Journal Article %A N. V. Rasskazova %T Extremal values of the integral of the mean curvature on the set of parallelepipeds with a~given geodesic diameter %J Vladikavkazskij matematičeskij žurnal %D 2013 %P 77-81 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a8/ %G ru %F VMJ_2013_15_2_a8
N. V. Rasskazova. Extremal values of the integral of the mean curvature on the set of parallelepipeds with a~given geodesic diameter. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 2, pp. 77-81. http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a8/