Extremal values of the integral of the mean curvature on the set of parallelepipeds with a given geodesic diameter
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 2, pp. 77-81
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, extremal values of the mean curvature integral on set of parallelepipeds with a given geodesic diameter are obtained. The maximal (minimal) value of the integral of mean curvature is attained for a degenerate parallelepiped with relation $0:1:1$ ($0:0:1$, respectively) for its edge lengths.
@article{VMJ_2013_15_2_a8,
author = {N. V. Rasskazova},
title = {Extremal values of the integral of the mean curvature on the set of parallelepipeds with a~given geodesic diameter},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {77--81},
year = {2013},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a8/}
}
TY - JOUR AU - N. V. Rasskazova TI - Extremal values of the integral of the mean curvature on the set of parallelepipeds with a given geodesic diameter JO - Vladikavkazskij matematičeskij žurnal PY - 2013 SP - 77 EP - 81 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a8/ LA - ru ID - VMJ_2013_15_2_a8 ER -
%0 Journal Article %A N. V. Rasskazova %T Extremal values of the integral of the mean curvature on the set of parallelepipeds with a given geodesic diameter %J Vladikavkazskij matematičeskij žurnal %D 2013 %P 77-81 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a8/ %G ru %F VMJ_2013_15_2_a8
N. V. Rasskazova. Extremal values of the integral of the mean curvature on the set of parallelepipeds with a given geodesic diameter. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 2, pp. 77-81. http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a8/
[1] Vyalyi M. N., “Kratchaishie puti po poverkhnosti parallelepipeda”, Mat. prosveschenie. Ser. 3, 9, MTsNMO, M., 2005, 203–206
[2] Nikonorov Yu. G., Nikonorova Yu. V., “O vnutrennem rasstoyanii na poverkhnosti parallelepipeda”, Tr. Rubtsovskogo industr. in-ta, 9, 2000, 222–228
[3] Santalo L. A., Integralnaya geometriya i geometricheskie veroyatnosti, Nauka, M., 1983, 360 pp. | MR | Zbl
[4] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, Nauka, M., 1966, 416 pp.
[5] Nikonorov Yu. G., Nikonorova Yu. V., “The intrinsic diameter of the surface of a parallelepiped”, Discrete and Computational Geometry, 40 (2008), 504–527 | DOI | MR | Zbl