Infinitesimal MG-deformations of ovaloid
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 2, pp. 35-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider infinitesimal deformations of a closed surface with positive Gaussian curvature, under which the variation of Gaussian curvature is given as a function on a surface and the Grassman image is kept invariant.
@article{VMJ_2013_15_2_a4,
     author = {D. A. Zhukov},
     title = {Infinitesimal {MG-deformations} of ovaloid},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {35--44},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a4/}
}
TY  - JOUR
AU  - D. A. Zhukov
TI  - Infinitesimal MG-deformations of ovaloid
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 35
EP  - 44
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a4/
LA  - ru
ID  - VMJ_2013_15_2_a4
ER  - 
%0 Journal Article
%A D. A. Zhukov
%T Infinitesimal MG-deformations of ovaloid
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 35-44
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a4/
%G ru
%F VMJ_2013_15_2_a4
D. A. Zhukov. Infinitesimal MG-deformations of ovaloid. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 2, pp. 35-44. http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a4/