Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 2, pp. 27-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we introduce several new classes of $p$-valent functions defined by new generalized derivative operator and investigate various inclusion properties of these classes. Some interesting applications involving classes of integral operators are also considered.
@article{VMJ_2013_15_2_a3,
     author = {E. A. Eljamal and M. Darus},
     title = {Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {27--34},
     year = {2013},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a3/}
}
TY  - JOUR
AU  - E. A. Eljamal
AU  - M. Darus
TI  - Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 27
EP  - 34
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a3/
LA  - en
ID  - VMJ_2013_15_2_a3
ER  - 
%0 Journal Article
%A E. A. Eljamal
%A M. Darus
%T Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 27-34
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a3/
%G en
%F VMJ_2013_15_2_a3
E. A. Eljamal; M. Darus. Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 2, pp. 27-34. http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a3/

[1] Aghalary R., Ali R. M., Joshi S. B., Ravichandran V., “Inequalities for analytic functions defined by certain linear operators”, Int. J. Math. Sci., 4 (2005), 267–274 | MR | Zbl

[2] Cho N. E., Kim T. H., “Multiplier transformations and strongly closeto-convex functions”, Bull. Korean Math. Soc., 40 (2003), 399–410 | DOI | MR | Zbl

[3] Salagean G. S., “Subclasses of univalent functions”, Lecture Notes in Math., 1013, Springer-Verlag, Heideberg, 1983, 362–372 | DOI | MR

[4] Bernardi D., “Convex and starlike univalent functions”, Trans. Amer. Math., 135 (1969), 429–446 | DOI | MR | Zbl

[5] Libera R. J., “Some classes of regular univalent functions”, Proc. Amer. Math., 16 (1965), 755–758 | DOI | MR | Zbl

[6] Livingston A. E., “On the radius of univalence of certain analytic functions”, Proc. Amer. Math., 17 (1966), 352–357 | DOI | MR | Zbl

[7] S-Mou Yuan, Z-Ming Liu, Srivastava H. M., “Some inclusion relationships and integral-preserving properties of certain subclasses of meromorphic functions associated with a family of integral operators”, J. Math. Anal., 337 (2008), 505–515 | DOI | MR | Zbl

[8] Lashin A. Y., Aouf M. K., “The Noor integral operator and multivalent functions”, Proc. Pakistan Acad. Sci., 44 (2007), 273–279 | MR