@article{VMJ_2013_15_1_a8,
author = {M. H. Shkhanukov-Lafishev and S. M. Arhestova and M. B. Tkhamokov},
title = {Vector additive schemes for certain classes of hyperbolic equations},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {71--84},
year = {2013},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a8/}
}
TY - JOUR AU - M. H. Shkhanukov-Lafishev AU - S. M. Arhestova AU - M. B. Tkhamokov TI - Vector additive schemes for certain classes of hyperbolic equations JO - Vladikavkazskij matematičeskij žurnal PY - 2013 SP - 71 EP - 84 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a8/ LA - ru ID - VMJ_2013_15_1_a8 ER -
%0 Journal Article %A M. H. Shkhanukov-Lafishev %A S. M. Arhestova %A M. B. Tkhamokov %T Vector additive schemes for certain classes of hyperbolic equations %J Vladikavkazskij matematičeskij žurnal %D 2013 %P 71-84 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a8/ %G ru %F VMJ_2013_15_1_a8
M. H. Shkhanukov-Lafishev; S. M. Arhestova; M. B. Tkhamokov. Vector additive schemes for certain classes of hyperbolic equations. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 71-84. http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a8/
[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 161 pp. | MR
[2] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1989, 262 pp. | MR
[3] Abrashin V. N., “Ob odnom variante metoda peremennykh napravlenii resheniya mnogomernykh zadach matematicheskoi fiziki”, Dif. uravneniya, 26:2 (1990), 314–323 | MR | Zbl
[4] Abrashin V. N., Mukha V. A., “Ob odnom klasse ekonomichnykh raznostnykh skhem resheniya mnogomernykh zadach matematicheskoi fiziki”, Dif. uravneniya, 28:10 (1992), 1786–1799 | MR | Zbl
[5] Abrashina-Zhadaeva N. G., Romanova N. S., “Mnogokomponentnye vektornye skhemy rasschepleniya dlya resheniya mnogomernykh zadach matematicheskoi fiziki”, Dif. uravneniya, 42:7 (2006), 883–894 | MR | Zbl
[6] Vabischevich P. N., “Ob odnom klasse vektornykh additivnykh skhem”, Izv. vuzov. Matematika, 1994, no. 9, 11–15 | MR | Zbl
[7] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp. | Zbl
[8] Vabischevich P. N., “Vektornye additivnye raznostnye skhemy dlya evolyutsionnykh uravnenii pervogo poryadka”, Zhurn. vychisl. matematiki i mat. fiziki, 36:3 (1996), 44–51 | MR | Zbl
[9] Samarskii A. A., Vabischevich P. N., Computational Modeling and Computing in Physics, JINR, Dubna, 1997, 363–371 | MR
[10] Samarskii A. A., Vabischevich P. H., Matus P. P., “Ustoichivost vektornykh additivnykh skhem”, Dokl. RAN, 361:6 (1998), 746–748 | MR
[11] Vabishevich P. N., “Regulyarizovannye additivnye operatorno-raznostnye skhemy”, Zhurn. vychisl. matematiki i mat. fiziki, 50:3 (2010), 449–457 | MR
[12] Chudnovskii A. F., Teplofizika pochvy, Nauka, M., 1976, 352 pp.
[13] Vinogradova M. B., Rudenko O. B., Sukhorukov A. P., Teoriya voln, Nauka, M., 1979, 384 pp. | MR
[14] Shkhanukov M. Kh., “Ob odnom metode resheniya kraevykh zadach dlya uravnenii tretego poryadka”, Dokl. AN SSSR, 265:6 (1982), 1327–1330 | MR | Zbl
[15] Soldatov A. P., Shkhanukov M. Kh., “Kraevye zadachi s obschim nelokalnym usloviem dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, Dokl. AN SSSR, 297:3 (1987), 547–552 | MR