Vector additive schemes for certain classes of hyperbolic equations
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 71-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Vector-additive schemes for certain classes of hyperbolic equations arising in the theories of moisture transport and waves in relaxing media are constructed. Stability and convergence of difference schemes in the class of sufficiently smooth solutions are proved.
@article{VMJ_2013_15_1_a8,
     author = {M. H. Shkhanukov-Lafishev and S. M. Arhestova and M. B. Tkhamokov},
     title = {Vector additive schemes for certain classes of hyperbolic equations},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {71--84},
     year = {2013},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a8/}
}
TY  - JOUR
AU  - M. H. Shkhanukov-Lafishev
AU  - S. M. Arhestova
AU  - M. B. Tkhamokov
TI  - Vector additive schemes for certain classes of hyperbolic equations
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 71
EP  - 84
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a8/
LA  - ru
ID  - VMJ_2013_15_1_a8
ER  - 
%0 Journal Article
%A M. H. Shkhanukov-Lafishev
%A S. M. Arhestova
%A M. B. Tkhamokov
%T Vector additive schemes for certain classes of hyperbolic equations
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 71-84
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a8/
%G ru
%F VMJ_2013_15_1_a8
M. H. Shkhanukov-Lafishev; S. M. Arhestova; M. B. Tkhamokov. Vector additive schemes for certain classes of hyperbolic equations. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 71-84. http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a8/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 161 pp. | MR

[2] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1989, 262 pp. | MR

[3] Abrashin V. N., “Ob odnom variante metoda peremennykh napravlenii resheniya mnogomernykh zadach matematicheskoi fiziki”, Dif. uravneniya, 26:2 (1990), 314–323 | MR | Zbl

[4] Abrashin V. N., Mukha V. A., “Ob odnom klasse ekonomichnykh raznostnykh skhem resheniya mnogomernykh zadach matematicheskoi fiziki”, Dif. uravneniya, 28:10 (1992), 1786–1799 | MR | Zbl

[5] Abrashina-Zhadaeva N. G., Romanova N. S., “Mnogokomponentnye vektornye skhemy rasschepleniya dlya resheniya mnogomernykh zadach matematicheskoi fiziki”, Dif. uravneniya, 42:7 (2006), 883–894 | MR | Zbl

[6] Vabischevich P. N., “Ob odnom klasse vektornykh additivnykh skhem”, Izv. vuzov. Matematika, 1994, no. 9, 11–15 | MR | Zbl

[7] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp. | Zbl

[8] Vabischevich P. N., “Vektornye additivnye raznostnye skhemy dlya evolyutsionnykh uravnenii pervogo poryadka”, Zhurn. vychisl. matematiki i mat. fiziki, 36:3 (1996), 44–51 | MR | Zbl

[9] Samarskii A. A., Vabischevich P. N., Computational Modeling and Computing in Physics, JINR, Dubna, 1997, 363–371 | MR

[10] Samarskii A. A., Vabischevich P. H., Matus P. P., “Ustoichivost vektornykh additivnykh skhem”, Dokl. RAN, 361:6 (1998), 746–748 | MR

[11] Vabishevich P. N., “Regulyarizovannye additivnye operatorno-raznostnye skhemy”, Zhurn. vychisl. matematiki i mat. fiziki, 50:3 (2010), 449–457 | MR

[12] Chudnovskii A. F., Teplofizika pochvy, Nauka, M., 1976, 352 pp.

[13] Vinogradova M. B., Rudenko O. B., Sukhorukov A. P., Teoriya voln, Nauka, M., 1979, 384 pp. | MR

[14] Shkhanukov M. Kh., “Ob odnom metode resheniya kraevykh zadach dlya uravnenii tretego poryadka”, Dokl. AN SSSR, 265:6 (1982), 1327–1330 | MR | Zbl

[15] Soldatov A. P., Shkhanukov M. Kh., “Kraevye zadachi s obschim nelokalnym usloviem dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, Dokl. AN SSSR, 297:3 (1987), 547–552 | MR