On numerical solution of a scattering problem. Analysis of numerical results
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 65-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical results for the Lippmann–Schwinger equation obtained with the application of the associated second kind Legendre function are described and analyzed. The effectiveness of the constructed computational scheme is illustrated.
@article{VMJ_2013_15_1_a7,
     author = {Sh. S. Khubezhty and A. O. Tsutsaev},
     title = {On numerical solution of a~scattering problem. {Analysis} of numerical results},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {65--70},
     year = {2013},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a7/}
}
TY  - JOUR
AU  - Sh. S. Khubezhty
AU  - A. O. Tsutsaev
TI  - On numerical solution of a scattering problem. Analysis of numerical results
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 65
EP  - 70
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a7/
LA  - ru
ID  - VMJ_2013_15_1_a7
ER  - 
%0 Journal Article
%A Sh. S. Khubezhty
%A A. O. Tsutsaev
%T On numerical solution of a scattering problem. Analysis of numerical results
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 65-70
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a7/
%G ru
%F VMJ_2013_15_1_a7
Sh. S. Khubezhty; A. O. Tsutsaev. On numerical solution of a scattering problem. Analysis of numerical results. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 65-70. http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a7/

[1] Sanikidze D. G., “Primenenie priblizhennykh formul dlya integralov s yadrom Koshi dlya chislennogo resheniya zadach rasseyaniya”, Tr. XIII mezhdunar. simpoziuma (MDOZMF–2007), Kharkov–Kherson, 2007, 254–257

[2] Sanikidze D. G., Khubezhty Sh. S., “O vychislitelnoi skheme povyshennoi tochnosti dlya resheniya odnogo klassa singulyarnykh uravnenii”, Tr. XIV mezhdunar. simpoziuma (MDOZMF–2009), Ch. 1, Kharkov–Kherson, 2009, 164–167

[3] Khubezhty Sh. S., “Chislennoe reshenie odnoi zadachi rasseyaniya s primeneniem nulei Funktsii Lezhandra”, Vladikavk. mat. zhurn., 13:1 (2011), 71–77 | MR | Zbl

[4] Teilor Dzh., Teoriya rasseyaniya, Mir, M., 1975, 566 pp.

[5] Hartel M. I., Tabakin F., “Nuclear saturation and smoothness of nucleon-nucleon potentials”, Nuclear Physics A, 158 (1970), 1–42 | DOI

[6] Sege G., Ortogonalnye mnogochleny, Fizmatiz, M., 1962, 500 pp.

[7] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO “Yanuc”, M., 1995, 520 pp. | MR | Zbl

[8] Krylov V. I., Shulgin L. T., Spravochnaya kniga po chislennomu integrirovaniyu, Nauka, M., 1966, 370 pp. | MR