On positive invertibility and splittings of operators in ordered Banach spaces
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 41-50
Voir la notice de l'article provenant de la source Math-Net.Ru
The positive invertibility of operators between Banach spaces, ordered by special closed cones, is characterized by the existence of splittings for the operators into the difference of two operators with appropriate spectral properties. Some results, up to now known only for matrices, are generalized to operators and to order intervals of operators.
@article{VMJ_2013_15_1_a5,
author = {K. C. Sivakumar and M. R. Weber},
title = {On positive invertibility and splittings of operators in ordered {Banach} spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {41--50},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a5/}
}
TY - JOUR AU - K. C. Sivakumar AU - M. R. Weber TI - On positive invertibility and splittings of operators in ordered Banach spaces JO - Vladikavkazskij matematičeskij žurnal PY - 2013 SP - 41 EP - 50 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a5/ LA - en ID - VMJ_2013_15_1_a5 ER -
K. C. Sivakumar; M. R. Weber. On positive invertibility and splittings of operators in ordered Banach spaces. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 41-50. http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a5/