On positive invertibility and splittings of operators in ordered Banach spaces
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 41-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The positive invertibility of operators between Banach spaces, ordered by special closed cones, is characterized by the existence of splittings for the operators into the difference of two operators with appropriate spectral properties. Some results, up to now known only for matrices, are generalized to operators and to order intervals of operators.
@article{VMJ_2013_15_1_a5,
     author = {K. C. Sivakumar and M. R. Weber},
     title = {On positive invertibility and splittings of operators in ordered {Banach} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {41--50},
     year = {2013},
     volume = {15},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a5/}
}
TY  - JOUR
AU  - K. C. Sivakumar
AU  - M. R. Weber
TI  - On positive invertibility and splittings of operators in ordered Banach spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 41
EP  - 50
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a5/
LA  - en
ID  - VMJ_2013_15_1_a5
ER  - 
%0 Journal Article
%A K. C. Sivakumar
%A M. R. Weber
%T On positive invertibility and splittings of operators in ordered Banach spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 41-50
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a5/
%G en
%F VMJ_2013_15_1_a5
K. C. Sivakumar; M. R. Weber. On positive invertibility and splittings of operators in ordered Banach spaces. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 41-50. http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a5/

[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press, N.Y., 1985, 367 pp. | MR | Zbl

[2] Azhorkin V. I., Bakhtin I. A., “On the geometry of cones of linear positive operators in Banach spaces”, Tr. tsentralnogo zonalnogo ob'edineniya mat. kafedr. Funktsionalnyi analiz i teoriya funktsii, 2, 1971, 3–10

[3] Azhorkin V. I., Bakhtin I. A., “On the characteristics of normality and reproducibility of the wedge of linear positive operators”, Funktsionalnyi analiz, 15, Izd-vo gos. ped. in-ta, Ulyanovsk, 1980, 5–13

[4] Bakhtin I. A., “On the existence of positive eigenvectors of linear positive operators”, Mat. sb., 64(106):1 (1964), 102–114 | MR | Zbl

[5] Bakhtin I. A., Cones of Linear Positive Operators, Izd-vo gos. ped. in-ta, Voronezh, 1978

[6] Bakhtin I. A., “A theorem on the existence of positive eigenvectors of linear positive non-compact operators”, Funktsionalnyi analiz, 17, 1981, 10–19 | MR | Zbl

[7] Bakhtin I. A., “On the existence of positive eigenvectors of linear positive operators”, Operatornye uravneniya v funktsionalnykh prostranstvakh, Izd-vo gos. ped. in-ta, Voronezh, 1988, 10–19

[8] Berman A., Plemmons R. J., Nonnegative Matrices in Mathematical Sciences, Classics in Applied Math., 9, Society for Industrial and Appl. Math., Philadelphia, 1994 | MR

[9] Collatz L., “Aufgaben monotoner Art”, Arch. Math., 3 (1952), 366–376 | DOI | MR | Zbl

[10] Debasisha Mishra, Sivakumar K. C., “On Splittings of Matrices an Nonnegative Generalized Inverses”, Operators and Matrices, 6 (2012), 85–95 | MR | Zbl

[11] Farina L., Rinaldi S., Positive Linear Systems: Theory and Applications, Pure an Appl. Math., John Wiley Sons, Inc., New York, 2000 | MR

[12] Pergamon Press, Oxford, 1982 | MR | Zbl | Zbl

[13] Krasnosel'skij M. A., Lifshitz J. A., Pokornyj Y. V., Stecenko V. J., “Positive invertible linear operators and solvability of nonlinear equations”, Dokl. AN Tadzhikskoi SSR, 17:1 (1974), 12–14 | MR

[14] Krasnosel'skij M. A., Lifshitz J. A., Pokornyj Y. V., Stecenko V. J., “On positive invertibility of linear operators”, Kachestvennye i priblizitelnye metody issled. operatornykh uravnenii, 5 (1980), 90–99 | MR | Zbl

[15] Krasnosel'skij M. A., Lifshitz J. A., Sobolev A. V., Positive Linear Systems: The Method of Positive Operators, Heldermann Verlag, Berlin, 1989 | MR

[16] Ortega J. M., Rheinboldt W. C., Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl

[17] McArthur C. W., “In what spaces is every closed normal cone regular?”, Proc. Edinburgh Math. Soc., 17 (1970/1971), 121–125 | DOI | MR | Zbl

[18] Peris J. E., “A new characterization of inverse-positive matrices”, Linear Algebra Appl., 154–155 (1991), 45–58 | DOI | MR | Zbl

[19] Rohn J., “Inverse-positive interval matrices”, Z. Angew. Math. Mech., 67 (1987), T492–T493 | MR | Zbl

[20] Schröder J., “Lineare Operatoren mit positiven Inversen”, Arch. Rational Mech. Anal., 8 (1961), 408–434 | DOI | MR

[21] Schröder J., Operator Inequalities, Math. in Science and Engineering, 147, Acad. Press, New York, 1980, 367 pp. | MR | Zbl

[22] Varga R. S., Matrix Iterative Analysis, Springer Ser. in Comp. Math., 27, Springer-Verlag, Berlin, 2009, 358 pp. | MR | Zbl

[23] Vulikh B. Z., Introduction to the Theory of Cones in Normed Spaces, Izdat. Kalinin. Univ., Kalinin, 1977 | Zbl

[24] Vulikh B. Z., Special Topics in the Geometry of Cones in Normed Spaces, Izdat. Kalinin. Univ., Kalinin, 1978

[25] Weber M. R., “On the Positiveness of the Inverse Operator”, Math. Nachr., 163 (1993), 145–149 | DOI | MR | Zbl

[26] Weber M. R., “On the Positiveness of the Inverse Operator. Erratum”, Math. Nachr., 171 (1995), 325–326 | DOI | MR

[27] Weber M. R., “On positive invertibiliy of operators and their decompositions”, Math. Nachr., 282:10 (2009), 1478–1487 | DOI | MR | Zbl