Dynamic systems described by two differential equations with derivatives of fractional order
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 30-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Dynamic systems described by two differential equations of fractional order are considered. The behavior of phase trajectories in case of real roots of the characteristic equation is investigated. Phase trajectories for various values of parameter are constructed and system transition from one dynamic state to another is established.
@article{VMJ_2013_15_1_a4,
     author = {M. A. Nazaraliev and V. D. Beibalaev},
     title = {Dynamic systems described by two differential equations with derivatives of fractional order},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {30--40},
     year = {2013},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a4/}
}
TY  - JOUR
AU  - M. A. Nazaraliev
AU  - V. D. Beibalaev
TI  - Dynamic systems described by two differential equations with derivatives of fractional order
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 30
EP  - 40
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a4/
LA  - ru
ID  - VMJ_2013_15_1_a4
ER  - 
%0 Journal Article
%A M. A. Nazaraliev
%A V. D. Beibalaev
%T Dynamic systems described by two differential equations with derivatives of fractional order
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 30-40
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a4/
%G ru
%F VMJ_2013_15_1_a4
M. A. Nazaraliev; V. D. Beibalaev. Dynamic systems described by two differential equations with derivatives of fractional order. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 30-40. http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a4/

[1] Mandelbrot B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1982, 468 pp. | MR | Zbl

[2] Olemskoi A. I., Flat A. Ya., “Ispolzovanie kontseptsii fraktala v fizike kondensirovannoi sredy”, Uspekhi fiz. nauk, 163:12 (1993), 1–50 | DOI

[3] Zosimov V. V., Lyamshev L. M., “Fraktaly v volnovykh protsessakh”, Uspekhi fiz. nauk, 165:4 (1995), 361–402 | DOI

[4] Samko S. G., Kilbas F. F., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. | Zbl

[5] Nigmatulin R. I., “Drobnyi integral i ego fizicheskaya interpretatsiya”, Teoret. i mat. fizika, 90:3 (1992), 354–368 | MR | Zbl

[6] Chukbar K. V., “Stokhasticheskii perenos i drobnye proizvodnye”, Zhurn. eksperem. i teoret. fiziki, 108:5 (1995), 1875–1884

[7] Meilanov R. P., Yanpolov M. S., “Osobennosti fazovoi traektorii fraktalnogo ostsillyatora”, Pisma v zhurn. tekhn. fiziki, 28:1 (2002), 67–73

[8] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primenenie, Nalchik, 2003, 299 pp. | Zbl

[9] Nakhusheva V. A., Differentsialnye uravneniya matematicheskikh modelei nelokalnykh protsessov, Nauka, M., 2006, 174 pp. | MR | Zbl

[10] Andreev A. A., Ogorodnikov E. N., “Primenenie matrichnykh integro-differentsialnykh operatorov v reshenii zadachi Koshi dlya nekotorykh sistem obyknovennykh differentsialnykh uravnenii s proizvodnymi drobnogo poryadka”, Tr. VI Vseros. nauch. konf., Ch. 3, Samara, 2009, 31–38

[11] Beibalaev V. D., “Reshenie nachalnoi zadachi dlya differentsialnogo uravneniya fraktalnogo ostsillyatora”, Vestnik SamGTU. Ser. Fiz.-mat. nauki, 2009, no. 2(19), 240–242 | DOI

[12] Lefshets S., Geometricheskaya teoriya differentsialnykh uravnenii, Izd-vo inostr. lit-ry, M., 1961, 388 pp. | MR

[13] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem, Nauka, M., 1966, 568 pp. | MR | Zbl

[14] Malinetskii G. G., Potapov A. B., Sovremennye problemy nelineinoi dinamiki, Editorial URSS, M., 2000, 336 pp.

[15] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 504 pp. | MR

[16] Kheil Dzh., Kolebaniya v nelineinykh sistemakh, Mir, M., 1966, 230 pp.

[17] Moiseev N. N., Asimptoticheskie metody nelineinoi mekhaniki, Nauka, M., 1981, 400 pp. | MR | Zbl

[18] Veber V. K., “Struktura obschego resheniya sistemy $y^\alpha=Ay$, $0\alpha\leq1$”, Tr. Kirgiz. gos. un-ta. Ser. Mat. nauki, 1976, no. 11, 26–32 | Zbl

[19] Nazaraliev M. A., Beibalaev V. D., “Nelineinye kolebaniya v sredakh s fraktalnoi strukturoi”, Sb. tr. mezhdunar. Rossiisko-Bolgarskogo simpoziuma “Uravneniya smeshannogo tipa i rodstvennye problemy analiza i informatiki”, Nalchik–Khabez, 2010, 177–180

[20] Nazaraliev M. A., Meilanov R. P., Beibalaev V. D., Shabanova M. R., “Osobennosti fazovoi traektorii fraktalnogo ‘bryusselyatora’ ”, Sb. tr. VII Vseros. nauch. konf. s mezhdunar. uchastiem “Matematicheskoe modelirovanie i kraevye zadachi”, Ch. 3, Samara, 2010, 204–210

[21] Lavrova A. I., Postnikov E. B., Romanovskii Yu. M., “Bryusselyator – abstraktnaya khimicheskaya reaktsiya?”, Uspekhi fiz. nauk, 179:12 (2009), 1327–1332 | DOI