On multidimensional integral operators with homogeneous kernels perturbated by one-sided multiplicative shift operators
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the multidimensional integral operators with kernels homogeneous of degree $(-n)$ and invariant under the rotation group, which are perturbated by one-sided multiplicative shift operators. For these operators the invertibility and one-sided invertibility criterions in $L_p$-space are obtained.
@article{VMJ_2013_15_1_a0,
     author = {O. G. Avsyankin},
     title = {On multidimensional integral operators with homogeneous kernels perturbated by one-sided multiplicative shift operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--13},
     year = {2013},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - On multidimensional integral operators with homogeneous kernels perturbated by one-sided multiplicative shift operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 5
EP  - 13
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a0/
LA  - ru
ID  - VMJ_2013_15_1_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T On multidimensional integral operators with homogeneous kernels perturbated by one-sided multiplicative shift operators
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 5-13
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a0/
%G ru
%F VMJ_2013_15_1_a0
O. G. Avsyankin. On multidimensional integral operators with homogeneous kernels perturbated by one-sided multiplicative shift operators. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/VMJ_2013_15_1_a0/

[1] Karapetiants N., Samko S., Equations with Involutive Operators, Birkhäuser, Boston–Basel–Berlin, 2001, 427 pp. | MR | Zbl

[2] Avsyankin O. G., Karapetyants N. K., “Mnogomernye integralnye operatory s odnorodnymi stepeni $-n$ yadrami”, Dokl. RAN, 368:6 (1999), 727–729 | MR | Zbl

[3] Avsyankin O. G., “Ob algebre parnykh integralnykh operatorov s odnorodnymi yadrami”, Mat. zametki, 73:4 (2003), 483–493 | DOI | MR | Zbl

[4] Avsyankin O. G., “O mnogomernykh integralnykh operatorakh s odnorodnymi yadrami i ostsilliruyuschimi radialnymi koeffitsientami”, Dif. uravneniya, 43:9 (2007), 1193–1196 | MR | Zbl

[5] Avsyankin O. G., “O $C^*$-algebre, porozhdennoi mnogomernymi integralnymi operatorami s odnorodnymi yadrami i operatorami multiplikativnogo sdviga”, Dokl. RAN, 419:6 (2008), 727–728 | MR | Zbl

[6] Avsyankin O. G., “Obratimost mnogomernykh integralnykh operatorov s odnorodnymi yadrami, vozmuschennykh operatorami multiplikativnogo sdviga”, Tr. nauchnoi shkoly I. B. Simonenko, Sb. nauch. trudov, Izd-vo YuFU, Rostov n/D., 2010., 22–29

[7] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971, 352 pp. | MR

[8] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1984, 208 pp. | MR | Zbl