@article{VMJ_2012_14_4_a9,
author = {E. I. Smirnov},
title = {Using homological methods on the base of iterated spectra in functional analysis},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {73--82},
year = {2012},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/}
}
E. I. Smirnov. Using homological methods on the base of iterated spectra in functional analysis. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 73-82. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/
[1] Palamodov V. P., “Functor of projective limit in the category of topological linear spaces”, Math. Collect., 75:4 (1968), 567–603 | MR | Zbl
[2] Palamodov V. P., “Homological methods in the theory of locally convex spaces”, Russian Math. Surveys, 26:1 (1971), 1–64 | DOI | MR
[3] Smirnov E. I., Homological spectra in functional analysis, Springer Verlag, London, 2002, 209 pp. | MR
[4] Zabreiko P. P., Smirnov E. I., “On the closed graph theorem”, Siberian Math. J., 18:2 (1977), 305–316 | DOI | MR
[5] Rajkov D. A., “On the closed graph theorem for topological linear spaces”, Siberian Math. J., 7:2 (1966), 353–372 | MR
[6] Smirnov E. I., “On continuity of semiadditive functional”, Math. Notes, 19:4 (1976), 329–333 | DOI | MR | Zbl
[7] de Wilde M., “Reseaus dans les espaces lineaires a seminormes”, Mem. Soc. Roi. Sci. Liege, 19:4 (1969), 1–104
[8] Smirnov E. I., “The theory of Hausdorff spectra in the category of locally convex spaces”, Functiones et Approximatio, 24 (1996), 17–33 | MR | Zbl
[9] Retakh V. S., “On dual homomorphism of locally convex spaces”, Funct. Anal. and its Appl., 3:4 (1969), 307–311 | DOI | MR | Zbl
[10] Nobeling C., “Uber die derivierten des inversen und des directen limes einer modulfamilie”, Topology, 1 (1962), 47–61 | DOI | MR | Zbl
[11] Cartan A., Heilenberg C., Homological Algebra, Mir, M., 1960, 510 pp. | MR
[12] Smirnov E. I., “Hausdorff spectra and the closed graph theorem”, Topological vector spaces, algebras and related areas, Proceedings Volume, Pitman Research Notes in Math. Series, 316, Longman, England, 1994, 37–50 | MR