Using homological methods on the base of iterated spectra in functional analysis
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 73-82

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce new concepts of functional analysis: Hausdorff spectrum and Hausdorff limit or $H$-limit of Hausdorff spectrum of locally convex spaces. Particular cases of regular $H$-limit are projective and inductive limits of separated locally convex spaces. The class of $H$-spaces contains Fréchet spaces and is stable under forming countable inductive and projective limits, closed subspaces and quotient spaces. Moreover, for $H$-space an unproved variant of the closed graph theorem holds true. Homological methods are used for proving of theorems of vanishing at zero for first derivative of Hausdorff limit functor: $\mathrm{Haus}^1(\boldsymbol X)=0$.
@article{VMJ_2012_14_4_a9,
     author = {E. I. Smirnov},
     title = {Using homological methods on the base of iterated spectra in functional analysis},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/}
}
TY  - JOUR
AU  - E. I. Smirnov
TI  - Using homological methods on the base of iterated spectra in functional analysis
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 73
EP  - 82
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/
LA  - en
ID  - VMJ_2012_14_4_a9
ER  - 
%0 Journal Article
%A E. I. Smirnov
%T Using homological methods on the base of iterated spectra in functional analysis
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 73-82
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/
%G en
%F VMJ_2012_14_4_a9
E. I. Smirnov. Using homological methods on the base of iterated spectra in functional analysis. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 73-82. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/