Using homological methods on the base of iterated spectra in functional analysis
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 73-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce new concepts of functional analysis: Hausdorff spectrum and Hausdorff limit or $H$-limit of Hausdorff spectrum of locally convex spaces. Particular cases of regular $H$-limit are projective and inductive limits of separated locally convex spaces. The class of $H$-spaces contains Fréchet spaces and is stable under forming countable inductive and projective limits, closed subspaces and quotient spaces. Moreover, for $H$-space an unproved variant of the closed graph theorem holds true. Homological methods are used for proving of theorems of vanishing at zero for first derivative of Hausdorff limit functor: $\mathrm{Haus}^1(\boldsymbol X)=0$.
@article{VMJ_2012_14_4_a9,
     author = {E. I. Smirnov},
     title = {Using homological methods on the base of iterated spectra in functional analysis},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {73--82},
     year = {2012},
     volume = {14},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/}
}
TY  - JOUR
AU  - E. I. Smirnov
TI  - Using homological methods on the base of iterated spectra in functional analysis
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 73
EP  - 82
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/
LA  - en
ID  - VMJ_2012_14_4_a9
ER  - 
%0 Journal Article
%A E. I. Smirnov
%T Using homological methods on the base of iterated spectra in functional analysis
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 73-82
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/
%G en
%F VMJ_2012_14_4_a9
E. I. Smirnov. Using homological methods on the base of iterated spectra in functional analysis. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 73-82. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/

[1] Palamodov V. P., “Functor of projective limit in the category of topological linear spaces”, Math. Collect., 75:4 (1968), 567–603 | MR | Zbl

[2] Palamodov V. P., “Homological methods in the theory of locally convex spaces”, Russian Math. Surveys, 26:1 (1971), 1–64 | DOI | MR

[3] Smirnov E. I., Homological spectra in functional analysis, Springer Verlag, London, 2002, 209 pp. | MR

[4] Zabreiko P. P., Smirnov E. I., “On the closed graph theorem”, Siberian Math. J., 18:2 (1977), 305–316 | DOI | MR

[5] Rajkov D. A., “On the closed graph theorem for topological linear spaces”, Siberian Math. J., 7:2 (1966), 353–372 | MR

[6] Smirnov E. I., “On continuity of semiadditive functional”, Math. Notes, 19:4 (1976), 329–333 | DOI | MR | Zbl

[7] de Wilde M., “Reseaus dans les espaces lineaires a seminormes”, Mem. Soc. Roi. Sci. Liege, 19:4 (1969), 1–104

[8] Smirnov E. I., “The theory of Hausdorff spectra in the category of locally convex spaces”, Functiones et Approximatio, 24 (1996), 17–33 | MR | Zbl

[9] Retakh V. S., “On dual homomorphism of locally convex spaces”, Funct. Anal. and its Appl., 3:4 (1969), 307–311 | DOI | MR | Zbl

[10] Nobeling C., “Uber die derivierten des inversen und des directen limes einer modulfamilie”, Topology, 1 (1962), 47–61 | DOI | MR | Zbl

[11] Cartan A., Heilenberg C., Homological Algebra, Mir, M., 1960, 510 pp. | MR

[12] Smirnov E. I., “Hausdorff spectra and the closed graph theorem”, Topological vector spaces, algebras and related areas, Proceedings Volume, Pitman Research Notes in Math. Series, 316, Longman, England, 1994, 37–50 | MR