Using homological methods on the base of iterated spectra in functional analysis
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 73-82
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce new concepts of functional analysis: Hausdorff spectrum and Hausdorff limit or $H$-limit of Hausdorff spectrum of locally convex spaces. Particular cases of regular $H$-limit are projective and inductive limits of separated locally convex spaces. The class of $H$-spaces contains Fréchet spaces and is stable under forming countable inductive and projective limits, closed subspaces and quotient spaces. Moreover, for $H$-space an unproved variant of the closed graph theorem holds true. Homological methods are used for proving of theorems of vanishing at zero for first derivative of Hausdorff limit functor: $\mathrm{Haus}^1(\boldsymbol X)=0$.
@article{VMJ_2012_14_4_a9,
author = {E. I. Smirnov},
title = {Using homological methods on the base of iterated spectra in functional analysis},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {73--82},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/}
}
TY - JOUR AU - E. I. Smirnov TI - Using homological methods on the base of iterated spectra in functional analysis JO - Vladikavkazskij matematičeskij žurnal PY - 2012 SP - 73 EP - 82 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/ LA - en ID - VMJ_2012_14_4_a9 ER -
E. I. Smirnov. Using homological methods on the base of iterated spectra in functional analysis. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 73-82. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a9/