On optimal recovery of the Laplacian of a function from its inaccurately given Fourier transform
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 63-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the problem of the optimal recovery for a fractional power of the Laplacian of a function from its inaccurately given Fourier transform in metric $L_\infty$ on some convex subset of $\mathbb R^d$. The optimal recovery method is constructed. This method is not used the information about the Fourier transform outside some ball centred at the origin.
@article{VMJ_2012_14_4_a8,
     author = {E. O. Sivkova},
     title = {On optimal recovery of the {Laplacian} of a~function from its inaccurately given {Fourier} transform},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {63--72},
     year = {2012},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a8/}
}
TY  - JOUR
AU  - E. O. Sivkova
TI  - On optimal recovery of the Laplacian of a function from its inaccurately given Fourier transform
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 63
EP  - 72
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a8/
LA  - ru
ID  - VMJ_2012_14_4_a8
ER  - 
%0 Journal Article
%A E. O. Sivkova
%T On optimal recovery of the Laplacian of a function from its inaccurately given Fourier transform
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 63-72
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a8/
%G ru
%F VMJ_2012_14_4_a8
E. O. Sivkova. On optimal recovery of the Laplacian of a function from its inaccurately given Fourier transform. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 63-72. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a8/

[1] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 1965

[2] Micchelli C. A., Rivlin T. J., “A survey of optimal recovery”, Optimal Estimation in Approx. Theory, Plenum Press, New York, 1977, 1–54 | DOI | MR

[3] Melkman A. A., Micchelli C. A., “Optimal estimation of linear operators in Hilbert spaces from inaccurate data”, SIAM J. Numer. Anal., 16 (1979), 87–105 | DOI | MR | Zbl

[4] Traub J. F., Woźniakowski H., A General Theory of Optimal Algorithms, Academic Press, New York, 1980, xiv+341 pp. | MR

[5] Micchelli C. A., Rivlin T. J., “Lectures on optimal recovery”, Lecture Notes in Math., 1129, Springer-Verlag, Berlin, 1985, 21–93 | DOI | MR

[6] Arestov V. V., “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, Tr. Mat. in-ta AN SSSR, 189, 1989, 3–20 | MR

[7] Magaril-Ilyaev G. G., Osipenko K. Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Mat. zametki, 50:6 (1991), 85–93 | MR | Zbl

[8] Magaril-Ilyaev G. G., Tikhomirov V. M., “O neravenstvakh dlya proizvodnykh kolmogorovskogo tipa”, Mat. sb., 188:12 (1997), 73–106 | DOI | MR | Zbl

[9] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po koeffitsientam Fure, zadannym s pogreshnostyu”, Mat. sb., 193:3 (2002), 79–100 | DOI | MR | Zbl

[10] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po priblizhennoi informatsii o spektre i neravenstva dlya proizvodnykh”, Funkts. analiz i ego prilozh., 37:3 (2003), 51–64 | DOI | MR | Zbl

[11] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie proizvodnykh na sobolevskikh klassakh”, Vladikavk. mat. zhurn., 5:1 (2003), 39–47 | MR | Zbl

[12] Magaril-Ilyaev G. G., Sivkova E. O., “Nailuchshee vosstanovlenie operatora Laplasa funktsii po ee netochno zadannomu spektru”, Mat. sb., 203:4 (2012), 119–130 | DOI | MR | Zbl

[13] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, 3-e izd., Librokom, M., 2011, 176 pp.