On optimal recovery of the Laplacian of a~function from its inaccurately given Fourier transform
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 63-72
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the problem of the optimal recovery for a fractional power of the Laplacian of a function from its inaccurately given Fourier transform in metric $L_\infty$ on some convex subset of $\mathbb R^d$. The optimal recovery method is constructed. This method is not used the information about the Fourier transform outside some ball centred at the origin.
@article{VMJ_2012_14_4_a8,
author = {E. O. Sivkova},
title = {On optimal recovery of the {Laplacian} of a~function from its inaccurately given {Fourier} transform},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {63--72},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a8/}
}
TY - JOUR AU - E. O. Sivkova TI - On optimal recovery of the Laplacian of a~function from its inaccurately given Fourier transform JO - Vladikavkazskij matematičeskij žurnal PY - 2012 SP - 63 EP - 72 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a8/ LA - ru ID - VMJ_2012_14_4_a8 ER -
E. O. Sivkova. On optimal recovery of the Laplacian of a~function from its inaccurately given Fourier transform. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 63-72. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a8/