On correlation of two solution classes for Navier–Stokes equations. II
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 52-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a supplement to the author's work [1] devoted to the solvability of initial boundary value problem for the Navier–Stokes equations with mass force depeding on unknown (speed) polynomially. In this paper local resolvability of the problem in the generalized sense is established and the proof of a key lemma in [1] is also given.
@article{VMJ_2012_14_4_a7,
     author = {V. B. Levenshtam},
     title = {On correlation of two solution classes for {Navier{\textendash}Stokes} {equations.~II}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {52--62},
     year = {2012},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a7/}
}
TY  - JOUR
AU  - V. B. Levenshtam
TI  - On correlation of two solution classes for Navier–Stokes equations. II
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 52
EP  - 62
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a7/
LA  - ru
ID  - VMJ_2012_14_4_a7
ER  - 
%0 Journal Article
%A V. B. Levenshtam
%T On correlation of two solution classes for Navier–Stokes equations. II
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 52-62
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a7/
%G ru
%F VMJ_2012_14_4_a7
V. B. Levenshtam. On correlation of two solution classes for Navier–Stokes equations. II. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 52-62. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a7/

[1] Levenshtam V. B., “O vzaimosvyazi dvukh klassov reshenii uravnenii Nave–Stoksa”, Vladikavk. mat. zhurn., 12:3 (2010), 56–66 | MR | Zbl

[2] Simonenko I. B., “Obosnovanie metoda usredneniya dlya zadachi konvektsii v pole bystro ostsilliruyuschikh sil i dlya drugikh parabolicheskikh uravnenii”, Mat. sb., 87(129):2 (1972), 236–253 | MR | Zbl

[3] Simonenko I. B., Metod usredneniya v teorii nelineinykh uravnenii parabolicheskogo tipa s prilozheniem k zadacham gidrodinamicheskoi ustoichivosti, Izd-vo RGU, Rostov n/D., 1989, 112 pp. | Zbl

[4] Levenshtam V. B., “Odno svoistvo proektora $\Pi$ gidrodinamiki”, Kompleksnyi analiz, differentsialnye i integralnye uravneniya, Ellista, 1990, 89–96

[5] Levenshtam V. B., “Obosnovanie metoda usredneniya dlya zadachi konvektsii pri vysokochastotnykh vibratsiyakh”, Sib. mat. zhurn., 34:2 (1993), 92–109 | MR | Zbl

[6] Levenshtam V. B., “Asimptoticheskoe razlozhenie resheniya zadachi o vibratsionnoi konvektsii”, Zhurn. vychislitelnoi matematiki i mat. fiziki, 40:9 (2000), 1416–1424 | MR | Zbl

[7] Levenshtam V. B., “Asymptotic integration on initial boundary problem for Navier–Stokes system with a rapidly oscillating mass force”, Russian J. of Math. Physics, 12:1 (2005), 40–48 | MR | Zbl

[8] Levenshtam V. B., “Asimptoticheskoe integrirovanie parabolicheskikh zadach s bolshimi vysokochastotnymi slagaemymi”, Sib. mat. zhurn., 46:4 (2005), 805–821 | MR | Zbl

[9] Levenshtam V. B., “Obosnovanie metoda usredneniya dlya differentsialnykh uravnenii, soderzhaschikh bystroostsiliruyuschie slagaemye s bolshimi amplitudami”, Izv. RAN. Ser. mat., 70:2 (2006), 25–56 | DOI | MR | Zbl

[10] Levenshtam V. B., “Nekotorye voprosy teorii usredneniya parabolicheskikh uravnenii s bolshimi vysokochastotnymi slagaemymi”, Dokl. AN, 411:3 (2006), 302–305 | MR | Zbl

[11] Yudovich V. I., Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo RGU, Rostov n/D., 1984, 192 pp. | Zbl

[12] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp. | MR

[13] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 500 pp. | MR | Zbl

[14] Bykhovskii E. B.,Smirnov N. V., “Ob ortogonalnykh razlozheniyakh prostranstva vektor-funktsii, kvadratichno summiruemykh po dannoi oblasti”, Tr. MIAN SSSR, 59, 1960, 5–36 | MR | Zbl