On correlation of two solution classes for Navier--Stokes equations.~II
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 52-62

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a supplement to the author's work [1] devoted to the solvability of initial boundary value problem for the Navier–Stokes equations with mass force depeding on unknown (speed) polynomially. In this paper local resolvability of the problem in the generalized sense is established and the proof of a key lemma in [1] is also given.
@article{VMJ_2012_14_4_a7,
     author = {V. B. Levenshtam},
     title = {On correlation of two solution classes for {Navier--Stokes} {equations.~II}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {52--62},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a7/}
}
TY  - JOUR
AU  - V. B. Levenshtam
TI  - On correlation of two solution classes for Navier--Stokes equations.~II
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 52
EP  - 62
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a7/
LA  - ru
ID  - VMJ_2012_14_4_a7
ER  - 
%0 Journal Article
%A V. B. Levenshtam
%T On correlation of two solution classes for Navier--Stokes equations.~II
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 52-62
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a7/
%G ru
%F VMJ_2012_14_4_a7
V. B. Levenshtam. On correlation of two solution classes for Navier--Stokes equations.~II. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 52-62. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a7/