On Maharam polynomials
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 45-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Radon–Nikodým type theorem is proved and the Maharam extension is constructed for positive orthogonally additive polynomials in vector lattices.
@article{VMJ_2012_14_4_a6,
     author = {Z. A. Kusraeva and B. B. Tasoev},
     title = {On {Maharam} polynomials},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {45--51},
     year = {2012},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a6/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
AU  - B. B. Tasoev
TI  - On Maharam polynomials
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 45
EP  - 51
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a6/
LA  - ru
ID  - VMJ_2012_14_4_a6
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%A B. B. Tasoev
%T On Maharam polynomials
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 45-51
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a6/
%G ru
%F VMJ_2012_14_4_a6
Z. A. Kusraeva; B. B. Tasoev. On Maharam polynomials. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 45-51. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a6/

[1] Akilov G. P., Kolesnikov E. V., Kusraev A. G., “Poryadkovo nepreryvnoe rasshirenie polozhitelnogo operatora”, Sib. mat. zhurn., 29:5 (1988), 24–55 | MR

[2] Kusraev A. G., Mazhoriruemye operatory, Nauka, M., 2003, 619 pp. | MR

[3] Kusraeva Z. A., “O predstavlenii ortogonalno additivnykh polinomov”, Sib. mat. zhurn., 52:2 (2011), 315–325 | MR | Zbl

[4] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press Inc., London, 1985, xvi+367 pp. | MR | Zbl

[5] Benyamini Y., Lassalle S., Llavona J. G., “Homogeneous orthogonally additive polynomials on Banach lattices”, Bull. London Math. Soc., 38:3 (2006), 459–469 | DOI | MR | Zbl

[6] Boulabier K., Buskes G., “Vector lattice powers: $f$-algebras and functional calculus”, Communication in Algebra, 34 (2006), 1435–1442 | DOI | MR

[7] Bu Q., Buskes G., “Polynomials on Banach lattices and positive tensor products spaces”, J. Math. Anal. Appl., 388 (2012), 845–862 | MR | Zbl

[8] Buskes G., Kusraev A. G., “Representation and extension of orthoregular bilinear operators”, Vladikavkaz Math. J., 9:1 (2007), 16–29 | MR

[9] Buskes G., de Pagter B., van Rooij A., “Functional calculus in Riesz spaces”, Indag. Math. (N.S.), 4:2 (1991), 423–436 | DOI | MR | Zbl

[10] Dineen S., Complex Analysis on Infinite Dimensional Spaces, Springer, Berlin, 1999, 543 pp. | MR | Zbl

[11] Ibort A., Linares P., Llavona J. G., A Representation Theorem for Orthogonally Additive Polynomials on Riesz Spaces, 2012, arXiv: 1203.2379v1 | MR

[12] Kusraev A. G., “A Radon–Nikodým type theorem for orthosymmetric bilinear operators”, Positivity, 14:2 (2010), 225–238 | DOI | MR | Zbl

[13] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. 2, Function Spaces, Springer-Verlag, Berlin etc., 1979, 243 pp. | MR | Zbl

[14] Linares P., Orthogonal additive polynomials and applications, PhD, Departamento de Analisis Matematico, Universidad Complutense de Madrid, 2009, 105 pp.

[15] Loan J., “Polynomials on Riesz spaces”, J. Math. Anal. and Appl., 364 (2010), 71–78 | DOI | MR | Zbl

[16] Luxemburg W. A. J., de Pagter B., “Maharam extension of positive operators and $f$-algebras”, Positivity, 6:2 (2001), 147–190 | DOI | MR

[17] Luxemburg W. A. J., Schep A., “A Radon–Nikodým type theorem for positive operators and a dual”, Indag. Math., 10 (1978), 357–375 | DOI | MR

[18] Maharam D., “On positive operators”, Contemporary Math., 26 (1984), 263–277 | DOI | MR | Zbl

[19] Maharam D., “The representation of abstract integrals”, Trans. Amer. Math. Soc., 75:1 (1953), 154–184 | DOI | MR | Zbl

[20] Perez-Garcia D., Villanueva I., “Orthogonally additive polynomials on spaces of continuous functions”, J. Math. Anal. Appl., 306:1 (2005), 97–105 | DOI | MR | Zbl