About Green's function of a parabolic problem on a graph
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 32-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to Green's function of the mixed boundary problem for equation of parabolic type on geometrical graph. Existence, continuity and positivity of Green's function are studied.
@article{VMJ_2012_14_4_a4,
     author = {R. Ch. Kulaev},
     title = {About {Green's} function of a~parabolic problem on a~graph},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {32--40},
     year = {2012},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a4/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
TI  - About Green's function of a parabolic problem on a graph
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 32
EP  - 40
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a4/
LA  - ru
ID  - VMJ_2012_14_4_a4
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%T About Green's function of a parabolic problem on a graph
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 32-40
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a4/
%G ru
%F VMJ_2012_14_4_a4
R. Ch. Kulaev. About Green's function of a parabolic problem on a graph. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 32-40. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a4/

[1] Ali-Mehmeti F., von Below J. A., Nicaise S., Partial Differential Equations on Multistructures, Proceedings of a Conference (Luminy, France), Ser. Lecture Notes in Pure and Appl. Math., 219, Marcel Dekker, New York, 2001, 256 pp. | MR | Zbl

[2] von Below J. A., “Classical solvability of linear parabolic equations on networks”, J. Diff. Eq., 75 (1998), 316–337 | MR

[3] Gen Qi Xu, Mastorakis N. E., Differential Equations on Metric Graph, WSEAS Press, 2010, 242 pp.

[4] von Below J. A., “A Qualitative theory for parabolic problems under dynamical boundary conditions”, J. of Inequal. and Appl., 5 (2000), 467–486 | MR | Zbl

[5] von Below J. A., “A maximum principle for semilinear parabolic network equations”, Diff. Eq. with Appl. in Biology, Physics and Engineering, M. Dekker Inc., New York, 1991, 37–45 | MR

[6] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004, 272 pp. | MR | Zbl

[7] Penkin O. M., “O printsipe maksimuma dlya ellipticheskogo uravneniya na dvumernom kletochnom komplekse”, Dokl. AN, 352:4 (1997), 462–465 | MR | Zbl

[8] Penkin O. M., “O printsipe maksimuma dlya ellipticheskogo uravneniya na stratifitsirovannykh mnozhestvakh”, Differents. uravneniya, 34:10 (1998), 1433–1444 | MR

[9] Penkin O. M., Bogatov E. M., “O slaboi razreshimosti zadachi Dirikhle na stratifitsirovannykh mnozhestvakh”, Mat. zametki, 68:6 (2000), 874–876 | DOI | MR | Zbl

[10] Kulaev R. Ch., “O razreshimosti parabolicheskoi zadachi na grafe”, Ufimskii mat. zhurn., 2:4 (2010), 74–85

[11] Kamynin L. I., Maslennikova V. N., “O printsipe maksimuma dlya uravneniya s razryvnymi koeffitsientami”, Sib. mat. zhurn., 2:3 (1961), 384–399 | MR | Zbl

[12] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl

[13] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1969, 427 pp.