Symmetrical polynomials and conservation laws
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 83-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Vector fields with symmetrical polynomials as the first integrals are considered. The connection of these dynamical systems with the theory of multi-phase solutions of the solitonic models of mathematical physics is established.
@article{VMJ_2012_14_4_a10,
     author = {A. B. Shabat},
     title = {Symmetrical polynomials and conservation laws},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {83--94},
     year = {2012},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a10/}
}
TY  - JOUR
AU  - A. B. Shabat
TI  - Symmetrical polynomials and conservation laws
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 83
EP  - 94
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a10/
LA  - ru
ID  - VMJ_2012_14_4_a10
ER  - 
%0 Journal Article
%A A. B. Shabat
%T Symmetrical polynomials and conservation laws
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 83-94
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a10/
%G ru
%F VMJ_2012_14_4_a10
A. B. Shabat. Symmetrical polynomials and conservation laws. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 83-94. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a10/

[1] Drach U., “Sur l'integration par quadratures de l'equation differentielle $y''=[\varphi(x)+h]y$”, Compt. Rend. Acad. Sci., 168 (1919), 337–340 | Zbl

[2] Rozhdestvenskii B. L., Sidorenko A. D., “O nevozmozhnosti “gradientnoi katastrofy” dlya slabolineinykh sistem”, Vychislitelnaya matematika i mat. fizika, 7:5 (1967), 1176–1179 | MR

[3] Shabat A. B., “O potentsialakh s nulevym koeffitsientom otrazheniya”, Dinamika sploshnoi sredy, 5, 1970, 130–145

[4] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega de Friza, konechnoznachnye lineinye operatory i abelevy mnogoobraziya”, Uspekhi mat. nauk, 31:1 (1976), 55–136 | MR | Zbl

[5] Ito M., “Symmetries and conservation laws of a coupled nonlinear wave equation”, Phys. Lett. A, 91 (1982), 335–338 | DOI | MR

[6] Ferapontov E., “Integration of weakly nonlinear hydrodynamic systems in Riemann invariants”, Phys. Lett. A, 158 (1991), 112–118 | DOI | MR

[7] Adler V. E., Marikhin V. G., Shabat A. B., “Kanonicheskie preobrazovaniya Beklunda i lagranzhevy tsepochki”, Teoret. i mat. fizika, 129:2 (2001), 163–183 | DOI | MR | Zbl

[8] Martínez Alonso L., Shabat A. B., “Towards a theory of differential constraints of a hydrodynamic hierarchy”, J. Non. Math. Phys., 10:2 (2003), 229–242 | DOI | MR | Zbl

[9] Adler V. E., Shabat A. B., “Modelnoe uravnenie teorii solitonov”, Teoret. i mat. fizika, 153:1 (2007), 29–45 | DOI | MR | Zbl

[10] Shabat A. B., “Symmetries of spectral problems”, Lecture Notes in Physics, 767:1 (2009), 139–173 | DOI | MR | Zbl

[11] Gabiev R. A., Shabat A. B., “O rasshireniyakh KdF ierarkhii”, Issledovaniya po matematicheskomu analizu, differents. uravneniyam i ikh prilozheniyam, Itogi nauki. Yug Rossii. Mat. forum, 4, eds. Yu. F. Korobeinik, A. G. Kusraev, VNTs RAN, Vladikavkaz, 2010, 227–233