@article{VMJ_2012_14_4_a1,
author = {A. V. Gil and V. A. Nogin},
title = {Inversion and description of the ranges of potentials with singularities of their kernels on a~sphere},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {10--18},
year = {2012},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/}
}
TY - JOUR AU - A. V. Gil AU - V. A. Nogin TI - Inversion and description of the ranges of potentials with singularities of their kernels on a sphere JO - Vladikavkazskij matematičeskij žurnal PY - 2012 SP - 10 EP - 18 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/ LA - ru ID - VMJ_2012_14_4_a1 ER -
A. V. Gil; V. A. Nogin. Inversion and description of the ranges of potentials with singularities of their kernels on a sphere. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 10-18. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/
[1] Strichartz R. S., “Convolutions with kernels having singularities on a sphere”, Trans. Amer. Math. Soc., 146 (1970), 461–471 | DOI | MR
[2] Miyachi A., “On some singular Fourier multipliers”, J. Fac. Sci. Univ. Tokyo Sec. IA, 28 (1981), 267–315 | MR | Zbl
[3] Nogin V. A., Karasev D. N., “On the $L$-characteristic of some potential-type operators with radial kernels, having singularities on a sphere”, Fractional Calculus Applied Analysis, 4:3 (2001), 343–366 | MR | Zbl
[4] Luzhetskaya P. A., Nogin V. A., “$L^p\to L^q$-otsenki dlya nekotorykh operatorov tipa potentsiala s ostsilliruyuschimi simvolami i ikh prilozheniya”, Izv. vuzov. Matematika, 2002, no. 11, 79–82 | MR | Zbl
[5] Karasev D. N., Nogin V. A., “Description of the ranges of some potential-type operators with oscillating kernels in the non-elliptic case”, Fractional Calculus Applied Analysis, 5:3 (2002), 315–349 | MR | Zbl
[6] Gil A. V., Nogin V. A., “$L^1-H^1$ otsenki dlya obobschennogo potentsiala Strikhartsa”, Izv. vuzov. Matematika, 2011, no. 9, 10–18 | MR | Zbl
[7] Nogin V. A., Luzhetskaya P. A., “Inversion and description of the ranges of multiplier operators of Strichartz–Peral–Miyachi-type”, Fractional Calculus Applied Analysis, 3:1 (2000), 87–96 | MR | Zbl
[8] Fefferman C. L., Stein E. M., “$H^p$-spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl
[9] Stein E. M., Harmonic Analysis: Real-Variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993, 695 pp. | MR | Zbl
[10] Fefferman C. L., “Characterizations of bounded mean oscillation”, Bull. Amer. Math. Soc., 77 (1971), 587–588 | DOI | MR | Zbl
[11] Calderon A. P., Torchinsky A., “Parabolic maximal functions associated with a distribution, II”, Adv. Math., 24:2 (1977), 101–171 | DOI | MR | Zbl
[12] Lizorkin P. I., “Obobschennoe liuvillevskoe differentsirovanie i metod multiplikatorov v teorii vlozhenii klassov differentsiruemykh funktsii”, Tr. MIAN SSSR, 105, 1969, 89–167 | MR | Zbl
[13] Lizorkin P. I., “Operatory, svyazannye s drobnym differentsirovaniem, i klassy differentsiruemykh funktsii”, Tr. MIAN SSSR, 117, 1972, 212–243 | MR | Zbl
[14] Samko S. G., “Ob osnovnykh funktsiyakh, ischezayuschikh na zadannom mnozhestve, i o delenii na funktsii”, Mat. zametki, 21:5 (1977), 677–689 | MR | Zbl
[15] Samko S. G., “O plotnosti v $L_p(\mathbb R^n)$ prostranstva $\Phi_v$ tipa Lizorkina”, Mat. zametki, 31:6 (1982), 855–865 | MR | Zbl
[16] Samko S. G., Hypersingular Integrals and Applications, Ser. Anal. Methods and Special Functions, 5, Taylor Frances, London–New-York, 2002, 376 pp. | MR | Zbl
[17] Vatson G. N., Teoriya besselevykh funktsii, Izd-vo inostr. lit-ry, M., 1949, 798 pp.
[18] Gil A. V., Nogin V. A., “Otsenki dlya nekotorykh operatorov tipa potentsiala s ostsilliruyuschimi simvolami”, Vladikavk. mat. zhurn., 12:3 (2010), 21–29 | MR | Zbl