Inversion and description of the ranges of potentials with singularities of their kernels on a~sphere
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 10-18
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Within the framework of the method of approximative inverse operators we construct the inversion of generalized Strichartz potentials with densities in the Hardy space $H^1$ in the non-elliptic case, when their symbols degenerate on a set of measure zero. The ranges of these operators are also described.
			
            
            
            
          
        
      @article{VMJ_2012_14_4_a1,
     author = {A. V. Gil and V. A. Nogin},
     title = {Inversion and description of the ranges of potentials with singularities of their kernels on a~sphere},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {10--18},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Gil AU - V. A. Nogin TI - Inversion and description of the ranges of potentials with singularities of their kernels on a~sphere JO - Vladikavkazskij matematičeskij žurnal PY - 2012 SP - 10 EP - 18 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/ LA - ru ID - VMJ_2012_14_4_a1 ER -
%0 Journal Article %A A. V. Gil %A V. A. Nogin %T Inversion and description of the ranges of potentials with singularities of their kernels on a~sphere %J Vladikavkazskij matematičeskij žurnal %D 2012 %P 10-18 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/ %G ru %F VMJ_2012_14_4_a1
A. V. Gil; V. A. Nogin. Inversion and description of the ranges of potentials with singularities of their kernels on a~sphere. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 10-18. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/