Inversion and description of the ranges of potentials with singularities of their kernels on a sphere
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 10-18
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Within the framework of the method of approximative inverse operators we construct the inversion of generalized Strichartz potentials with densities in the Hardy space $H^1$ in the non-elliptic case, when their symbols degenerate on a set of measure zero. The ranges of these operators are also described.
@article{VMJ_2012_14_4_a1,
     author = {A. V. Gil and V. A. Nogin},
     title = {Inversion and description of the ranges of potentials with singularities of their kernels on a~sphere},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {10--18},
     year = {2012},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/}
}
TY  - JOUR
AU  - A. V. Gil
AU  - V. A. Nogin
TI  - Inversion and description of the ranges of potentials with singularities of their kernels on a sphere
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 10
EP  - 18
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/
LA  - ru
ID  - VMJ_2012_14_4_a1
ER  - 
%0 Journal Article
%A A. V. Gil
%A V. A. Nogin
%T Inversion and description of the ranges of potentials with singularities of their kernels on a sphere
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 10-18
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/
%G ru
%F VMJ_2012_14_4_a1
A. V. Gil; V. A. Nogin. Inversion and description of the ranges of potentials with singularities of their kernels on a sphere. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 10-18. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a1/

[1] Strichartz R. S., “Convolutions with kernels having singularities on a sphere”, Trans. Amer. Math. Soc., 146 (1970), 461–471 | DOI | MR

[2] Miyachi A., “On some singular Fourier multipliers”, J. Fac. Sci. Univ. Tokyo Sec. IA, 28 (1981), 267–315 | MR | Zbl

[3] Nogin V. A., Karasev D. N., “On the $L$-characteristic of some potential-type operators with radial kernels, having singularities on a sphere”, Fractional Calculus Applied Analysis, 4:3 (2001), 343–366 | MR | Zbl

[4] Luzhetskaya P. A., Nogin V. A., “$L^p\to L^q$-otsenki dlya nekotorykh operatorov tipa potentsiala s ostsilliruyuschimi simvolami i ikh prilozheniya”, Izv. vuzov. Matematika, 2002, no. 11, 79–82 | MR | Zbl

[5] Karasev D. N., Nogin V. A., “Description of the ranges of some potential-type operators with oscillating kernels in the non-elliptic case”, Fractional Calculus Applied Analysis, 5:3 (2002), 315–349 | MR | Zbl

[6] Gil A. V., Nogin V. A., “$L^1-H^1$ otsenki dlya obobschennogo potentsiala Strikhartsa”, Izv. vuzov. Matematika, 2011, no. 9, 10–18 | MR | Zbl

[7] Nogin V. A., Luzhetskaya P. A., “Inversion and description of the ranges of multiplier operators of Strichartz–Peral–Miyachi-type”, Fractional Calculus Applied Analysis, 3:1 (2000), 87–96 | MR | Zbl

[8] Fefferman C. L., Stein E. M., “$H^p$-spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl

[9] Stein E. M., Harmonic Analysis: Real-Variable Method, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993, 695 pp. | MR | Zbl

[10] Fefferman C. L., “Characterizations of bounded mean oscillation”, Bull. Amer. Math. Soc., 77 (1971), 587–588 | DOI | MR | Zbl

[11] Calderon A. P., Torchinsky A., “Parabolic maximal functions associated with a distribution, II”, Adv. Math., 24:2 (1977), 101–171 | DOI | MR | Zbl

[12] Lizorkin P. I., “Obobschennoe liuvillevskoe differentsirovanie i metod multiplikatorov v teorii vlozhenii klassov differentsiruemykh funktsii”, Tr. MIAN SSSR, 105, 1969, 89–167 | MR | Zbl

[13] Lizorkin P. I., “Operatory, svyazannye s drobnym differentsirovaniem, i klassy differentsiruemykh funktsii”, Tr. MIAN SSSR, 117, 1972, 212–243 | MR | Zbl

[14] Samko S. G., “Ob osnovnykh funktsiyakh, ischezayuschikh na zadannom mnozhestve, i o delenii na funktsii”, Mat. zametki, 21:5 (1977), 677–689 | MR | Zbl

[15] Samko S. G., “O plotnosti v $L_p(\mathbb R^n)$ prostranstva $\Phi_v$ tipa Lizorkina”, Mat. zametki, 31:6 (1982), 855–865 | MR | Zbl

[16] Samko S. G., Hypersingular Integrals and Applications, Ser. Anal. Methods and Special Functions, 5, Taylor Frances, London–New-York, 2002, 376 pp. | MR | Zbl

[17] Vatson G. N., Teoriya besselevykh funktsii, Izd-vo inostr. lit-ry, M., 1949, 798 pp.

[18] Gil A. V., Nogin V. A., “Otsenki dlya nekotorykh operatorov tipa potentsiala s ostsilliruyuschimi simvolami”, Vladikavk. mat. zhurn., 12:3 (2010), 21–29 | MR | Zbl