Representing systems of exponential functions in spaces of holomorphic functions with given growth near boundary
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 5-9

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $(LB)$ spaces of functions which are holomorphic in a convex domain and have a finite type with respect to an order near its boundary. Using Laplace transformation, we give a description of their duals. Then we characterize mimimal absolutely representing systems of exponential functions in these spaces and prove that they always exist.
@article{VMJ_2012_14_4_a0,
     author = {A. V. Abanin and V. A. Varziev},
     title = {Representing systems of exponential functions in spaces of holomorphic functions with given growth near boundary},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a0/}
}
TY  - JOUR
AU  - A. V. Abanin
AU  - V. A. Varziev
TI  - Representing systems of exponential functions in spaces of holomorphic functions with given growth near boundary
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 5
EP  - 9
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a0/
LA  - ru
ID  - VMJ_2012_14_4_a0
ER  - 
%0 Journal Article
%A A. V. Abanin
%A V. A. Varziev
%T Representing systems of exponential functions in spaces of holomorphic functions with given growth near boundary
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 5-9
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a0/
%G ru
%F VMJ_2012_14_4_a0
A. V. Abanin; V. A. Varziev. Representing systems of exponential functions in spaces of holomorphic functions with given growth near boundary. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 4, pp. 5-9. http://geodesic.mathdoc.fr/item/VMJ_2012_14_4_a0/