J.\,W.~Fickett's problem for isosceles triangles
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 74-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Two congruent overlapping isosceles triangles with the least angle between lateral sides are considered in the Euclidean plane. J. W. Fickett offered a bilateral estimation for the relation of the length of the part of the first triangle's boundary in the second triangle to the length of the part of the second triangle's the boundary in the first triangle. The paper shows that J. W. Fickett's supposition is not true in general. An analog of J. W. Fickett's estimation is proved for the isosceles triangles with the least angle between lateral sides.
@article{VMJ_2012_14_3_a7,
     author = {N. V. Rasskazova},
     title = {J.\,W.~Fickett's problem for isosceles triangles},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a7/}
}
TY  - JOUR
AU  - N. V. Rasskazova
TI  - J.\,W.~Fickett's problem for isosceles triangles
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 74
EP  - 86
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a7/
LA  - ru
ID  - VMJ_2012_14_3_a7
ER  - 
%0 Journal Article
%A N. V. Rasskazova
%T J.\,W.~Fickett's problem for isosceles triangles
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 74-86
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a7/
%G ru
%F VMJ_2012_14_3_a7
N. V. Rasskazova. J.\,W.~Fickett's problem for isosceles triangles. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 74-86. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a7/