J. W. Fickett's problem for isosceles triangles
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 74-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two congruent overlapping isosceles triangles with the least angle between lateral sides are considered in the Euclidean plane. J. W. Fickett offered a bilateral estimation for the relation of the length of the part of the first triangle's boundary in the second triangle to the length of the part of the second triangle's the boundary in the first triangle. The paper shows that J. W. Fickett's supposition is not true in general. An analog of J. W. Fickett's estimation is proved for the isosceles triangles with the least angle between lateral sides.
@article{VMJ_2012_14_3_a7,
     author = {N. V. Rasskazova},
     title = {J. {W.~Fickett's} problem for isosceles triangles},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {74--86},
     year = {2012},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a7/}
}
TY  - JOUR
AU  - N. V. Rasskazova
TI  - J. W. Fickett's problem for isosceles triangles
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 74
EP  - 86
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a7/
LA  - ru
ID  - VMJ_2012_14_3_a7
ER  - 
%0 Journal Article
%A N. V. Rasskazova
%T J. W. Fickett's problem for isosceles triangles
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 74-86
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a7/
%G ru
%F VMJ_2012_14_3_a7
N. V. Rasskazova. J. W. Fickett's problem for isosceles triangles. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 74-86. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a7/

[1] Nikonorov Yu. G., Nikonorova Yu. V., “Ob odnom podkhode k resheniyu zadachi Dzh. V. Fike o peresekayuschikhsya kongruentnykh mnogougolnikakh”, Vladikavk. mat. zhurn., 13:4 (2011), 52–59 | MR

[2] Nikonorov Yu. G., Nikonorova Yu. V., Primenenie sistemy Maple k resheniyu geometricheskikh zadach, Uchebnoe posobie, 2-e izd. dop., Izd-vo Altaiskogo gos. un-t, Rubtsovsk, 2005, 80 pp. | Zbl

[3] Nikonorova Yu. V., “Ob odnoi ekstremalnoi zadache na evklidovoi ploskosti”, Mat. trudy, 4:1 (2001), 111–121 | MR | Zbl

[4] Rasskazova N. V., “Zadacha Dzh. V. Fike dlya treugolnikov”, Izv. AGU, 2002, Spets. vyp., posvyaschennyi pyatiletiyu kraevoi konf. po matematike (Barnaul), 26–28 | Zbl

[5] Croft H. T., Falconer K. J., Guy R. K., Unsolved problems in geometry, Corrected reprint, Springer-Verlag, Berlin, 1994, xvi+198 pp. | MR | Zbl

[6] Fickett J. W., “Overlapping congruent convex bodies”, Amer. Math. Monthly, 87 (1980), 814–815 | DOI | MR | Zbl