The Riemann--Hhilbert boundary value problem for generalized analytic functions in Smirnov classes
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 63-73

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the Riemann–Hilbert boundary value problem for generalized analytic functions of a Smirnov class in a bounded simply connected domain whose boundary is a Lyapunov curve or a Radon curve without cusps. The coefficient of the boundary value condition is assumed continuous and perturbed by a bounded measurable function or continuous and perturbed by a bounded variation function. The paper uses the special representation for generalized analytic functions of Smirnov classes from the author's paper [16], which reduces the problem to that for holomorphic functions. The problem for the holomorphic functions was under study in the author's papers [1,2].
@article{VMJ_2012_14_3_a6,
     author = {S. B. Klimentov},
     title = {The {Riemann--Hhilbert} boundary value problem for generalized analytic functions in {Smirnov} classes},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {63--73},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a6/}
}
TY  - JOUR
AU  - S. B. Klimentov
TI  - The Riemann--Hhilbert boundary value problem for generalized analytic functions in Smirnov classes
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 63
EP  - 73
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a6/
LA  - ru
ID  - VMJ_2012_14_3_a6
ER  - 
%0 Journal Article
%A S. B. Klimentov
%T The Riemann--Hhilbert boundary value problem for generalized analytic functions in Smirnov classes
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 63-73
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a6/
%G ru
%F VMJ_2012_14_3_a6
S. B. Klimentov. The Riemann--Hhilbert boundary value problem for generalized analytic functions in Smirnov classes. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 63-73. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a6/