The Riemann--Hhilbert boundary value problem for generalized analytic functions in Smirnov classes
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 63-73
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Under study is the Riemann–Hilbert boundary value problem for generalized analytic functions of a Smirnov class in a bounded simply connected domain whose boundary is a Lyapunov curve or a Radon curve without cusps. The coefficient of the boundary value condition is assumed continuous and perturbed by a bounded measurable function or continuous and perturbed by a bounded variation function. The paper uses the special representation for generalized analytic functions of Smirnov classes from the author's paper [16], which reduces the problem to that for holomorphic functions. The problem for the holomorphic functions was under study in the author's papers [1,2].
			
            
            
            
          
        
      @article{VMJ_2012_14_3_a6,
     author = {S. B. Klimentov},
     title = {The {Riemann--Hhilbert} boundary value problem for generalized analytic functions in {Smirnov} classes},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {63--73},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a6/}
}
                      
                      
                    TY - JOUR AU - S. B. Klimentov TI - The Riemann--Hhilbert boundary value problem for generalized analytic functions in Smirnov classes JO - Vladikavkazskij matematičeskij žurnal PY - 2012 SP - 63 EP - 73 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a6/ LA - ru ID - VMJ_2012_14_3_a6 ER -
S. B. Klimentov. The Riemann--Hhilbert boundary value problem for generalized analytic functions in Smirnov classes. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 63-73. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a6/
