@article{VMJ_2012_14_3_a6,
author = {S. B. Klimentov},
title = {The {Riemann{\textendash}Hhilbert} boundary value problem for generalized analytic functions in {Smirnov} classes},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {63--73},
year = {2012},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a6/}
}
TY - JOUR AU - S. B. Klimentov TI - The Riemann–Hhilbert boundary value problem for generalized analytic functions in Smirnov classes JO - Vladikavkazskij matematičeskij žurnal PY - 2012 SP - 63 EP - 73 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a6/ LA - ru ID - VMJ_2012_14_3_a6 ER -
S. B. Klimentov. The Riemann–Hhilbert boundary value problem for generalized analytic functions in Smirnov classes. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 63-73. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a6/
[1] Klimentov S. B., “Zadacha Gilberta dlya golomorfnykh funktsii v klassakh Smirnova”, Issled. po mat. analizu, differents. uravneniyam i ikh prilozheniyam, Itogi nauki. Yug Rossii. Mat. forum, 4, VNTs RAN i RSO-A, Vladikavkaz, 2010, 252–263
[2] Klimentov S. B., “Zadacha Gilberta dlya golomorfnykh funktsii v klassakh Smirnova v oblasti s radonovskoi granitsei”, Izv. vuzov. Sev.-Kavk. reg. Estestv. nauki, 2011, no. 3, 14–18
[3] Musaev K. M., “Nekotorye klassy obobschennykh analiticheskikh funktsii”, Izv. Akad. nauk Azerb. SSR. Ser. fiz.-tekh. i mat. nauk, 1971, no. 2, 40–46 | MR | Zbl
[4] Musaev K. M., “O nekotorykh ekstremalnykh svoistvakh obobschennykh analiticheskikh funktsii”, Dokl. AN SSSR, 203:2 (1972), 289–292 | MR | Zbl
[5] Musaev K. M., “Teoremy tipa F. Rissa v teorii obobschennykh analiticheskikh funktsii”, Spetsialnye voprosy teorii funktsii, Izd-vo “ELM”, Baku, 1980, 137–144 | MR
[6] Musaev K. M., “Ob ogranichennosti singulyarnogo integrala Koshi v klasse obobschennykh analiticheskikh funktsii”, Izv. Akad. nauk Azerb. SSR. Matematika. Fizika. Tekhnika, 7:6 (1986), 3–8 | MR
[7] Musaev K. M., Gasanova T. Kh., “Ob annulyatorakh nekotorykh klassov obobschennykh analiticheskikh funktsii”, Tr. IMM AN Azerbaidzhana, 71:16 (1998), 162–168 | MR
[8] Musaev K. M., Gasanova T. Kh., “The boundary value problem in the class of generelized analytic functions – jump problem”, Transactions of AS Azerbaijan, 5:19 (1999), 109–112 | MR | Zbl
[9] Klimentov S. B., “Klassy Khardi obobschennykh analiticheskikh funktsii”, Izv. vuzov. Sev.-Kavk. reg. Estestv. nauki, 2003, no. 3, 6–10 | Zbl
[10] Klimentov S. B., “Kraevaya zadacha Rimana–Gilberta v klassakh Khardi obobschennykh analiticheskikh funktsii”, Izv. vuzov. Sev.-Kav. reg. Estestv. nauki, 2004, no. 4, 3–5
[11] Klimentov S. B., “Klassy Smirnova obobschennykh analiticheskikh funktsii”, Izv. vuzov. Sev.-Kavk. reg. Estestv. nauki, 2005, no. 1, 13–17
[12] Klimentov S. B., “Klassy $BMO$ obobschennykh analiticheskikh funktsii”, Vladikavk. mat. zhurn., 8:1 (2006), 27–39 | MR | Zbl
[13] Klimentov S. B., “Teorema dvoistvennosti dlya klassov Khardi obobschennykh analiticheskikh funktsii”, Kompleksnyi analiz. Teoriya operatorov. Mat. modelirovanie, VNTs RAN i RSO-A, Vladikavkaz, 2006, 63–73 | MR
[14] Klimentov S. B., “Predstavleniya vtorogo roda dlya klassov Khardi i $BMO$ obobschennykh analiticheskikh funktsii”, Issled. po sovremennomu analizu i mat. modelirovaniyu, IPMI VNTs RAN, Vladikavkaz, 2008, 38–54
[15] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959, 628 pp. | MR | Zbl
[16] Klimentov S. B., “Spetsialnoe predstavlenie vtorogo roda dlya obobschennykh analiticheskikh funktsii klassa Smirnova”, Izv. vuzov. Sev.-Kav. reg. Estestv. nauki, 2012, no. 2, 12–18
[17] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 630 pp. | MR | Zbl
[18] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975, 295 pp. | MR