Matrices comparable by columns and proportional by columns over lattices
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 45-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Matrices over a lattice $(L,\le)$ comparable by columns are studied. (A matrix is comparable by columns iff its columns form a linearly ordered set with the partial order induced from`$L$.) Some properties of the matrices are obtained. Solvability of matrix equations in this class of matrices is studied. The set of matrices proportional by columns is the subset of the set of matrices comparable by columns. Some properties as well as solvability of matrix equations are also studied for suth matrices.
@article{VMJ_2012_14_3_a4,
     author = {A. V. Zhuklina},
     title = {Matrices comparable by columns and proportional by columns over lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {45--57},
     year = {2012},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a4/}
}
TY  - JOUR
AU  - A. V. Zhuklina
TI  - Matrices comparable by columns and proportional by columns over lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 45
EP  - 57
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a4/
LA  - ru
ID  - VMJ_2012_14_3_a4
ER  - 
%0 Journal Article
%A A. V. Zhuklina
%T Matrices comparable by columns and proportional by columns over lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 45-57
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a4/
%G ru
%F VMJ_2012_14_3_a4
A. V. Zhuklina. Matrices comparable by columns and proportional by columns over lattices. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 45-57. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a4/

[1] Skornyakov L. A., “Obratimye matritsy nad distributivnymi strukturami”, Sib. mat. zhurn., 27:2 (1986), 182–185 | MR | Zbl

[2] Marenich V. E., “Prostye matritsy nad distributivnymi reshetkami”, Fundament. prikl. mat., 14:7 (2008), 157–173 | MR

[3] Kumarov V. G., “Reshetka idempotentnykh matrits nad distributivnymi reshetkami”, Fundament. prikl. mat., 13:4 (2007), 121–144 | MR | Zbl