The inverse coefficient problem for dissipative operators and identification of the properties of viscoelastic materials
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 31-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give some general formulation and the variational equation of the inverse problem of identifying the inhomogeneous characteristics of three-dimensional viscoelastic body. Under consideration is the problem of reconstruction of the functional coefficients of dissipative operators arising in solving several problems of identification of the properties of layered inhomogeneous viscoelastic structures in the analysis of spectral characteristics. We suggest a method for constructing an iterative process and present the results of recovering functions of different types.
@article{VMJ_2012_14_3_a3,
     author = {I. V. Bogachev and A. O. Vatulyan},
     title = {The inverse coefficient problem for dissipative operators and identification of the properties of viscoelastic materials},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {31--44},
     year = {2012},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a3/}
}
TY  - JOUR
AU  - I. V. Bogachev
AU  - A. O. Vatulyan
TI  - The inverse coefficient problem for dissipative operators and identification of the properties of viscoelastic materials
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 31
EP  - 44
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a3/
LA  - ru
ID  - VMJ_2012_14_3_a3
ER  - 
%0 Journal Article
%A I. V. Bogachev
%A A. O. Vatulyan
%T The inverse coefficient problem for dissipative operators and identification of the properties of viscoelastic materials
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 31-44
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a3/
%G ru
%F VMJ_2012_14_3_a3
I. V. Bogachev; A. O. Vatulyan. The inverse coefficient problem for dissipative operators and identification of the properties of viscoelastic materials. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 31-44. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a3/

[1] Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1974, 338 pp.

[2] Gladwell G. M. L., Inverse problems in vibration, Kluwer Academic Publishers, Waterloo, 2004, 471 pp. | MR | Zbl

[3] Vatulyan A. O., Obratnye zadachi v mekhanike deformiruemogo tverdogo tela, Fizmatlit, M., 2007, 223 pp.

[4] Vatulyan A. O., “O variatsionnom podkhode pri issledovanii obratnykh koeffitsientnykh zadach v teorii uprugosti”, Vladikavk. mat. zhurn., 11:1 (2009), 3–8 | MR

[5] Kim S., Kreider K. L., “Parameter identification for nonlinear elastic and viscoelastic plates”, Applied Numerical Math., 56 (2006), 1538–1554 | DOI | MR | Zbl

[6] Vatulyan A. O., “K teorii obratnykh koeffitsientnykh zadach v lineinoi mekhanike deformiruemogo tela”, Prikladnaya matematika i mekhanika, 2010, no. 6, 911–918 | MR

[7] Jadamba B., Khan A. A., Raciti F., “On the inverse problem of identifying Lame coefficients in linear elasticity”, J. Comput. Computers and Math. with Appl., 56 (2008), 431–443 | DOI | MR | Zbl

[8] McLaughlin J., Yoon J.-R., “Unique identifiability of elastic parameters from time-dependent interior displacement measurement”, Inverse Problems, 20 (2004), 25–45 | DOI | MR | Zbl

[9] Zhiming Chen, Zou J., “An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems”, J. Control and Optimization, 37 (1999), 892–910 | DOI | MR | Zbl

[10] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[11] Vatulyan A. O., Shevtsova M. S., “Ob identifikatsii svoistv neodnorodnykh vyazkouprugikh materialov”, Mekhanika kompozitsionnykh materialov i konstruktsii, 15:4 (2009), 475–485

[12] Vatulyan A. O., “Ob iteratsionnykh protsessakh v koeffitsientnykh obratnykh zadachakh”, Issled. po mat. analizu, differents. uravneniyam i ikh prilozheniyam, Itogi nauki. Yug Rossii. Mat. forum, 4, VNTs RAN i RSO-A, Vladikavkaz, 2010, 20–32

[13] Baranov I. V., Vatulyan A. O., Solovev A. I., “Ob odnom chislennom algoritme i ego primenenii v obratnykh zadachakh identifikatsii uprugikh sred”, Vychislitelnye tekhnologii, 2008, no. 3, 14–26

[14] Bocharova O. V., Vatulyan A. O., “O rekonstruktsii plotnosti i modulya Yunga dlya neodnorodnogo sterzhnya”, Akusticheskii zhurnal, 55:3 (2009), 281–288 | MR

[15] Vatulyan A. O., Satunovskii P. S., “Ob opredelenii uprugikh modulei pri analize kolebanii neodnorodnogo sloya”, Dokl. RAN, 414:1 (2007), 36–38 | Zbl

[16] Araújo A. L., Mota Soares C. M., Mota Soares C. A., Herskovits J., “Inverse estimation of elastic, viscoelastic and piezoelectric properties of anisotropic sandwich adaptive structures”, 7th Euromech Solid Mechanics Conference, v. 20, 2009, 25–45

[17] Polansky J., Boiron O., Novacek V., “Identification of viscoelastic properties of artificial materials simulating vascular wall”, J. Computer Methods in Biomechanics and Biomedical Engineering, 8 (2005), 10–41

[18] McLaughlin J., Ji L., “Recovery of the Lamé parameter $\mu$ in biological tissues”, Inverse Problems, 20 (2004), 1–24 | DOI | MR | Zbl

[19] Anikina T. A., Bogachev I. V., Vatulyan A. O., “Ob opredelenii neodnorodnykh reologicheskikh svoistv balok”, Vestn. DGTU, 10:7 (2011), 1016–1023

[20] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 543 pp. | MR