Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 13-30
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider spaces of functions holomorphic in a convex domain which are infinitely differentiable up to the boundary and have certain estimates of all derivatives. Some necessary and sufficient conditions are obtained for a minimal system of exponential functions to be an absolutely representing system in the spaces which are generated by a single weight. Relying on these results, we prove that absolutely representing systems of exponentials do not have the stability property under the passage to the limit over domains.
@article{VMJ_2012_14_3_a2,
author = {A. V. Abanin and S. V. Petrov},
title = {Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {13--30},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/}
}
TY - JOUR AU - A. V. Abanin AU - S. V. Petrov TI - Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness JO - Vladikavkazskij matematičeskij žurnal PY - 2012 SP - 13 EP - 30 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/ LA - ru ID - VMJ_2012_14_3_a2 ER -
%0 Journal Article %A A. V. Abanin %A S. V. Petrov %T Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness %J Vladikavkazskij matematičeskij žurnal %D 2012 %P 13-30 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/ %G ru %F VMJ_2012_14_3_a2
A. V. Abanin; S. V. Petrov. Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 13-30. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/