Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 13-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider spaces of functions holomorphic in a convex domain which are infinitely differentiable up to the boundary and have certain estimates of all derivatives. Some necessary and sufficient conditions are obtained for a minimal system of exponential functions to be an absolutely representing system in the spaces which are generated by a single weight. Relying on these results, we prove that absolutely representing systems of exponentials do not have the stability property under the passage to the limit over domains.
@article{VMJ_2012_14_3_a2,
     author = {A. V. Abanin and S. V. Petrov},
     title = {Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {13--30},
     year = {2012},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/}
}
TY  - JOUR
AU  - A. V. Abanin
AU  - S. V. Petrov
TI  - Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 13
EP  - 30
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/
LA  - ru
ID  - VMJ_2012_14_3_a2
ER  - 
%0 Journal Article
%A A. V. Abanin
%A S. V. Petrov
%T Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 13-30
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/
%G ru
%F VMJ_2012_14_3_a2
A. V. Abanin; S. V. Petrov. Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 13-30. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/

[1] Petrov S. V., “Suschestvovanie absolyutno predstavlyayuschikh sistem eksponent v prostranstvakh analiticheskikh funktsii”, Izv. vuzov. Sev.-Kavk. reg. Estestv. nauki, 2010, no. 5, 25–31

[2] Petrov S. V., “Suschestvovanie absolyutno predstavlyayuschikh sistem eksponent v prostranstvakh analiticheskikh funktsii s zadannoi granichnoi gladkostyu”, Issledovaniya po matematicheskomu analizu, Itogi nauki. YuFO. Mat. forum, 3, VNTs RAN, Vladikavkaz, 2009, 190–199

[3] Abanin A. V., Petrov S. V., “Svoistva absolyutno predstavlyayuschikh sistem eksponent i prosteishikh drobei v prostranstvakh analiticheskikh funktsii s zadannoi granichnoi gladkostyu”, Izv. vuzov. Sev.-Kavk. reg. Estestv. nauki, 2011, no. 4, 5–11

[4] Korobeinik Yu. F., Predstavlyayuschie sistemy: teoriya i prilozheniya, YuMI VNTs RAN, Vladikavkaz, 2009, 336 pp.

[5] Korobeinik Yu. F., “Interpolyatsionnye zadachi, netrivialnye razlozheniya nulya i predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1066–1114 | MR | Zbl

[6] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Uspekhi mat. nauk, 36:1 (1981), 73–126 | MR | Zbl

[7] Abanin A. V., “Kharakterizatsiya minimalnykh sistem pokazatelei predstavlyayuschikh sistem obobschennykh eksponent”, Izv. vuzov. Matematika, 1991, no. 2, 3–12 | MR | Zbl

[8] Abanin A. V., “Netrivialnye razlozheniya nulya i absolyutno predstavlyayuschie sistemy”, Mat. zametki, 57:4 (1995), 483–497 | MR | Zbl

[9] Abanin A. V., Ultradifferentsiruemye funktsii i ultraraspredeleniya, Nauka, M., 2007, 223 pp.

[10] Abanin A. V., “O multiplikatorakh prostranstva tselykh funktsii, zadavaemogo neradialnym dvuchlennym vesom”, Vladikavk. mat. zhurn., 10:4 (2008), 10–16 | MR

[11] Korobeinik Yu. F., “O multiplikatorakh vesovykh funktsionalnykh prostranstv”, Anal. Math., 15:2 (1989), 105–114 | DOI | MR

[12] Hörmander L., “On the range of convolution operators”, Ann. of Math., 76 (1962), 148–170 | DOI | MR | Zbl

[13] Yulmukhametov R. S., “Priblizhenie subgarmonicheskikh funktsii”, Mat. sb., 124(166):3(7) (1984), 393–415 | MR | Zbl

[14] Abanin A. V., Le Hai Khoi, Nalbandyan Yu. S., “Minimal absolutely representing systems of exponentials for $A^{-\infty}(\Omega)$”, J. Approx. Theory, 163:10 (2011), 1534–1545 | DOI | MR | Zbl

[15] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983, 176 pp. | MR