@article{VMJ_2012_14_3_a2,
author = {A. V. Abanin and S. V. Petrov},
title = {Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {13--30},
year = {2012},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/}
}
TY - JOUR AU - A. V. Abanin AU - S. V. Petrov TI - Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness JO - Vladikavkazskij matematičeskij žurnal PY - 2012 SP - 13 EP - 30 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/ LA - ru ID - VMJ_2012_14_3_a2 ER -
%0 Journal Article %A A. V. Abanin %A S. V. Petrov %T Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness %J Vladikavkazskij matematičeskij žurnal %D 2012 %P 13-30 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/ %G ru %F VMJ_2012_14_3_a2
A. V. Abanin; S. V. Petrov. Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 13-30. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/
[1] Petrov S. V., “Suschestvovanie absolyutno predstavlyayuschikh sistem eksponent v prostranstvakh analiticheskikh funktsii”, Izv. vuzov. Sev.-Kavk. reg. Estestv. nauki, 2010, no. 5, 25–31
[2] Petrov S. V., “Suschestvovanie absolyutno predstavlyayuschikh sistem eksponent v prostranstvakh analiticheskikh funktsii s zadannoi granichnoi gladkostyu”, Issledovaniya po matematicheskomu analizu, Itogi nauki. YuFO. Mat. forum, 3, VNTs RAN, Vladikavkaz, 2009, 190–199
[3] Abanin A. V., Petrov S. V., “Svoistva absolyutno predstavlyayuschikh sistem eksponent i prosteishikh drobei v prostranstvakh analiticheskikh funktsii s zadannoi granichnoi gladkostyu”, Izv. vuzov. Sev.-Kavk. reg. Estestv. nauki, 2011, no. 4, 5–11
[4] Korobeinik Yu. F., Predstavlyayuschie sistemy: teoriya i prilozheniya, YuMI VNTs RAN, Vladikavkaz, 2009, 336 pp.
[5] Korobeinik Yu. F., “Interpolyatsionnye zadachi, netrivialnye razlozheniya nulya i predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1066–1114 | MR | Zbl
[6] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Uspekhi mat. nauk, 36:1 (1981), 73–126 | MR | Zbl
[7] Abanin A. V., “Kharakterizatsiya minimalnykh sistem pokazatelei predstavlyayuschikh sistem obobschennykh eksponent”, Izv. vuzov. Matematika, 1991, no. 2, 3–12 | MR | Zbl
[8] Abanin A. V., “Netrivialnye razlozheniya nulya i absolyutno predstavlyayuschie sistemy”, Mat. zametki, 57:4 (1995), 483–497 | MR | Zbl
[9] Abanin A. V., Ultradifferentsiruemye funktsii i ultraraspredeleniya, Nauka, M., 2007, 223 pp.
[10] Abanin A. V., “O multiplikatorakh prostranstva tselykh funktsii, zadavaemogo neradialnym dvuchlennym vesom”, Vladikavk. mat. zhurn., 10:4 (2008), 10–16 | MR
[11] Korobeinik Yu. F., “O multiplikatorakh vesovykh funktsionalnykh prostranstv”, Anal. Math., 15:2 (1989), 105–114 | DOI | MR
[12] Hörmander L., “On the range of convolution operators”, Ann. of Math., 76 (1962), 148–170 | DOI | MR | Zbl
[13] Yulmukhametov R. S., “Priblizhenie subgarmonicheskikh funktsii”, Mat. sb., 124(166):3(7) (1984), 393–415 | MR | Zbl
[14] Abanin A. V., Le Hai Khoi, Nalbandyan Yu. S., “Minimal absolutely representing systems of exponentials for $A^{-\infty}(\Omega)$”, J. Approx. Theory, 163:10 (2011), 1534–1545 | DOI | MR | Zbl
[15] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983, 176 pp. | MR