Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 13-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider spaces of functions holomorphic in a convex domain which are infinitely differentiable up to the boundary and have certain estimates of all derivatives. Some necessary and sufficient conditions are obtained for a minimal system of exponential functions to be an absolutely representing system in the spaces which are generated by a single weight. Relying on these results, we prove that absolutely representing systems of exponentials do not have the stability property under the passage to the limit over domains.
@article{VMJ_2012_14_3_a2,
     author = {A. V. Abanin and S. V. Petrov},
     title = {Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {13--30},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/}
}
TY  - JOUR
AU  - A. V. Abanin
AU  - S. V. Petrov
TI  - Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 13
EP  - 30
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/
LA  - ru
ID  - VMJ_2012_14_3_a2
ER  - 
%0 Journal Article
%A A. V. Abanin
%A S. V. Petrov
%T Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 13-30
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/
%G ru
%F VMJ_2012_14_3_a2
A. V. Abanin; S. V. Petrov. Minimal absolutely representing systems of exponential functions in spaces of analytic functions with given boundary smoothness. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 3, pp. 13-30. http://geodesic.mathdoc.fr/item/VMJ_2012_14_3_a2/