On nontrivial solvability of a nonlinear Hammerstein–Volterra type integral equation
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 57-66
Cet article a éte moissonné depuis la source Math-Net.Ru
The existence is studied of one parametric family of positive bounded solutions for a class of Hammerstein–Volterra type nonlinear homogeneous integral equations. This class of equations has important applications in the kinetic theory of gases.
@article{VMJ_2012_14_2_a6,
author = {Kh. A. Khachatryan and S. A. Grigoryan},
title = {On nontrivial solvability of a~nonlinear {Hammerstein{\textendash}Volterra} type integral equation},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {57--66},
year = {2012},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a6/}
}
TY - JOUR AU - Kh. A. Khachatryan AU - S. A. Grigoryan TI - On nontrivial solvability of a nonlinear Hammerstein–Volterra type integral equation JO - Vladikavkazskij matematičeskij žurnal PY - 2012 SP - 57 EP - 66 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a6/ LA - ru ID - VMJ_2012_14_2_a6 ER -
Kh. A. Khachatryan; S. A. Grigoryan. On nontrivial solvability of a nonlinear Hammerstein–Volterra type integral equation. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 57-66. http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a6/
[1] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978, 495 pp. | MR
[2] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967, 440 pp. | Zbl
[3] Engibaryan N. B., Khachatryan A. Kh., “Voprosy nelineinoi teorii dinamiki razrezhennogo gaza”, Mat. modelirovanie, 16:1 (2004), 67–74 | MR | Zbl
[4] Khachatryan Kh. A., “Otsenki resheniya odnogo integralnogo uravneniya tipa Volterra”, Uchenye Zapiski ErGu. Matematika, 2003, no. 1, 21–26
[5] Kolmogorov A. N., Fomin V. S., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981, 544 pp. | MR