On the fundamental solution of the Cauchy problem for a hyperbolic operator
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 45-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under study are the properties of the fundamental solution of the generalized Cauchy problem for some hyperbolic operator.
@article{VMJ_2012_14_2_a4,
     author = {Zh. D. Totieva},
     title = {On the fundamental solution of the {Cauchy} problem for a~hyperbolic operator},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {45--49},
     year = {2012},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a4/}
}
TY  - JOUR
AU  - Zh. D. Totieva
TI  - On the fundamental solution of the Cauchy problem for a hyperbolic operator
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 45
EP  - 49
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a4/
LA  - ru
ID  - VMJ_2012_14_2_a4
ER  - 
%0 Journal Article
%A Zh. D. Totieva
%T On the fundamental solution of the Cauchy problem for a hyperbolic operator
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 45-49
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a4/
%G ru
%F VMJ_2012_14_2_a4
Zh. D. Totieva. On the fundamental solution of the Cauchy problem for a hyperbolic operator. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 45-49. http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a4/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1967, 436 pp. | MR

[2] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977, 504 pp.

[3] Tuaeva Zh. D., “Mnogomernaya matematicheskaya model seismiki s pamyatyu”, Issledovaniya po differents. uravneniyam i mat. modelirovaniyu, VNTs RAN, Vladikavkaz, 2008, 297–306

[4] Yakhno V. G., Obobschennye funktsii v obratnykh zadachakh dlya differentsialnykh uravnenii, Metodicheskie ukazaniya, NGU, Novosibirsk, 1987, 24 pp.