On the fundamental solution of the Cauchy problem for a hyperbolic operator
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 45-49
Cet article a éte moissonné depuis la source Math-Net.Ru
Under study are the properties of the fundamental solution of the generalized Cauchy problem for some hyperbolic operator.
@article{VMJ_2012_14_2_a4,
author = {Zh. D. Totieva},
title = {On the fundamental solution of the {Cauchy} problem for a~hyperbolic operator},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {45--49},
year = {2012},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a4/}
}
Zh. D. Totieva. On the fundamental solution of the Cauchy problem for a hyperbolic operator. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 45-49. http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a4/
[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1967, 436 pp. | MR
[2] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977, 504 pp.
[3] Tuaeva Zh. D., “Mnogomernaya matematicheskaya model seismiki s pamyatyu”, Issledovaniya po differents. uravneniyam i mat. modelirovaniyu, VNTs RAN, Vladikavkaz, 2008, 297–306
[4] Yakhno V. G., Obobschennye funktsii v obratnykh zadachakh dlya differentsialnykh uravnenii, Metodicheskie ukazaniya, NGU, Novosibirsk, 1987, 24 pp.