On bases in spaces of continuous $n$-homogeneous polynomials in nuclear Köthe spaces
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 39-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A basis in the space of continuous $n$-homogeneous polynomials mappings a nuclear Köthe–Frechet space into itself is constructed. The space of polynomials is considered with the compact open topology. Some related problems are also discussed.
@article{VMJ_2012_14_2_a3,
     author = {V. P. Kondakov},
     title = {On bases in spaces of continuous $n$-homogeneous polynomials in nuclear {K\"othe} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {39--44},
     year = {2012},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a3/}
}
TY  - JOUR
AU  - V. P. Kondakov
TI  - On bases in spaces of continuous $n$-homogeneous polynomials in nuclear Köthe spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 39
EP  - 44
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a3/
LA  - ru
ID  - VMJ_2012_14_2_a3
ER  - 
%0 Journal Article
%A V. P. Kondakov
%T On bases in spaces of continuous $n$-homogeneous polynomials in nuclear Köthe spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 39-44
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a3/
%G ru
%F VMJ_2012_14_2_a3
V. P. Kondakov. On bases in spaces of continuous $n$-homogeneous polynomials in nuclear Köthe spaces. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 39-44. http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a3/

[1] Kondakov V. P., Tri osnovnykh printsipa lineinogo funktsionalnogo analiza, ikh obobscheniya i prilozheniya, VNTs RAN, Vladikavkaz, 2007, 208 pp.

[2] Boland P. J., Dineen S., “Holomorphic functions on fully nuclear spaces”, Bull. Soc. Math. France, 106 (1978), 311–336 | MR | Zbl

[3] Dineen S., Complex analysis in locally convex spaces, Math. Stud., 57, North-Holland, 1981 | MR | Zbl

[4] Hille E., Phillips R. S., Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Pub., 31, Amer. Math. Soc., Providence, R.I., 1957, 796 pp. | MR | Zbl

[5] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967, 266 pp. | MR

[6] Ryan R. A., “Holomorphic mappings on $l_1$”, Trans. Amer. Math. Soc., 302 (1987), 797–811 | MR | Zbl

[7] Dineen S., “Analytic functionals on fully nuclear spaces”, Stud. Math., 73 (1982), 11–32 | MR | Zbl

[8] Khrennikov A. Yu., Peterson X., “Teorema Peli–Vinera dlya obobschennykh tselykh funktsii na beskonechnomernykh prostranstvakh”, Izv. RAN. Ser. mat., 65:2 (2001), 201–224 | DOI | MR | Zbl

[9] Kondakov V. P., “O predstavlenii v vide prostranstv Këte prostranstv golomorfnykh funktsii”, Vladikavk. mat. zhurn., 7:4 (2005), 22–29 | MR | Zbl

[10] Kondakov V. P., “O differentsiruemosti otobrazhenii i stroenii prostranstv golomorfnykh funktsii na prostranstvakh chislovykh posledovatelnostei”, Vladikavk. mat. zhurn., 9:2 (2007), 9–21 | MR

[11] Dineen S., Timoney R. M., “Absolute bases, tensor products and a theorem of Bohr”, Stud. Math., 94 (1989), 227–234 | MR | Zbl