About Shunkov's groups, saturated with direct product of groups
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 35-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that an infinite periodic Shunkov's group, saturated with direct products of cyclic groups of odd orders by two-dimentional projective special linear groups over finite fields of characteristic two is locally finite.
@article{VMJ_2012_14_2_a2,
     author = {A. A. Duzh and A. A. Shlyopkin},
     title = {About {Shunkov's} groups, saturated with direct product of groups},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {35--38},
     year = {2012},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a2/}
}
TY  - JOUR
AU  - A. A. Duzh
AU  - A. A. Shlyopkin
TI  - About Shunkov's groups, saturated with direct product of groups
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 35
EP  - 38
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a2/
LA  - ru
ID  - VMJ_2012_14_2_a2
ER  - 
%0 Journal Article
%A A. A. Duzh
%A A. A. Shlyopkin
%T About Shunkov's groups, saturated with direct product of groups
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 35-38
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a2/
%G ru
%F VMJ_2012_14_2_a2
A. A. Duzh; A. A. Shlyopkin. About Shunkov's groups, saturated with direct product of groups. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 35-38. http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a2/

[1] Gorenstein D., Konechnye prostye gruppy, Mir, M., 1985, 560 pp. | MR | Zbl

[2] Panyushkin D. N., Tukhvatullina L. R., Filippov K. A., “O gruppakh Shunkova, nasyschennykh pryamymi proizvedeniyami tsiklicheskikh i proektivnykh spetsialnykh lineinykh grupp”, Tr. IMM UrO RAN, 16, no. 2, 2010, 177–185

[3] Suchkov N. M., “O periodicheskikh gruppakh s abelevymi tsentralizatorami involyutsii”, Mat. sb., 193:2 (2002), 153–160 | DOI | MR | Zbl