About invariant tensor fields on low dimensional Lie groups
Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 3-30

Voir la notice de l'article provenant de la source Math-Net.Ru

Complete classification of possible signatures of the one dimensional curvature operator on three dimensional Lie groups with left-invariant Riemannian metric and complete classification of four-dimensional Lie algebras (up to isomorphism) of Lie groups with left-invariant Riemannian metrics and harmonic Weyl tensor are given in this paper.
@article{VMJ_2012_14_2_a0,
     author = {D. S. Voronov and O. P. Gladunova and E. D. Rodionov and V. V. Slavskii},
     title = {About invariant tensor fields on low dimensional {Lie} groups},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--30},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a0/}
}
TY  - JOUR
AU  - D. S. Voronov
AU  - O. P. Gladunova
AU  - E. D. Rodionov
AU  - V. V. Slavskii
TI  - About invariant tensor fields on low dimensional Lie groups
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2012
SP  - 3
EP  - 30
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a0/
LA  - ru
ID  - VMJ_2012_14_2_a0
ER  - 
%0 Journal Article
%A D. S. Voronov
%A O. P. Gladunova
%A E. D. Rodionov
%A V. V. Slavskii
%T About invariant tensor fields on low dimensional Lie groups
%J Vladikavkazskij matematičeskij žurnal
%D 2012
%P 3-30
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a0/
%G ru
%F VMJ_2012_14_2_a0
D. S. Voronov; O. P. Gladunova; E. D. Rodionov; V. V. Slavskii. About invariant tensor fields on low dimensional Lie groups. Vladikavkazskij matematičeskij žurnal, Tome 14 (2012) no. 2, pp. 3-30. http://geodesic.mathdoc.fr/item/VMJ_2012_14_2_a0/